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ABSTRACT 

This research addresses the challenges of using the Rapidly Exploring Random Tree (RRT) 
algorithm as a mobile robot path planner. While RRT is known for its flexibility and wide 
applicability, it has limitations, including careful tuning, susceptibility to local minima, and 
generating jagged paths. The main objective is to improve the smoothness of RRT-generated 
trajectories and reduce significant path curvature. A novel approach is proposed to achieve 
these, integrating the RRT path planner with a modified version of the Whale Optimization 
Algorithm (RRT-WOA). The modified WOA algorithm incorporates parameter variation (𝐶𝐶 ) 
specifically designed to optimize trajectory smoothness. Additionally, Piecewise Cubic Hermite 
Interpolating Polynomial (PCHIP) instead of conventional splines for point interpolation 
further smoothes the generated paths. The modified WOA algorithm is thoroughly evaluated 
through a comprehensive comparative analysis, outperforming other popular population-based 
optimization algorithms such as Particle Swarm Optimization (PSO), Artificial Bee Colony 
(ABC), and Firefly Algorithm (FA) in terms of optimization time, trajectory smoothness, and 
improvement from the initial guess. This research contributes a refined trajectory planning 

approach and highlights the competitive 
advantage of the modified WOA algorithm 
in achieving smoother and more efficient 
trajectories compared to existing methods.

Keywords: Bio-inspired optimization, mobile robot 
navigation, obstacle avoidance, optimization, path 
planning, path smoothing, RRT
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INTRODUCTION

There are four navigation difficulties in robotics: sensing, localization, motion control, 
and path planning. Path planning may be argued to be the most significant element for 
navigation procedures. It is the process of determining a collision-free path in a given 
environment, which is often cluttered in the real world (Alam & Rafique, 2015; Dao et 
al., 2016; Karur et al., 2021).

Since mobile robots are utilized in a variety of applications, researchers have devised 
ways to effectively adapt to their needs and overcome some of the key obstacles encountered 
while implementing fully or partially autonomous navigation in a cluttered environment 
(Dosoftei et al., 2021; Galli et al., 2017; Mac et al., 2016; Zhou et al., 2019). In order 
to simplify the path planning problem and ensure that the robot runs/moves smoothly 
in a cluttered environment while avoiding obstacles, the configuration space must be 
matched with the algorithm. Multiple path-planning and path-finding techniques exist, 
with their usefulness depending on the system’s kinematics, the environment’s dynamics, 
the computational capabilities of the robot, and the availability of input from sensors and 
other sources. The trade-offs between algorithm performance and complexity also rely on 
the use case.

Research in robotics, particularly in the subfield of autonomous navigation, significantly 
emphasizes the concept of robot path planning. Path planning algorithms build trajectories 
for robots to follow so that they can safely and effectively reach their destinations.

The Rapidly Exploring Random Tree (RRT) method is one of the most well-known 
approaches to path design. This sampling-based motion planning algorithm employs a 
“randomized” technique to explore the space for obstacles and generate a tree of possible 
paths. RRT was given its name because it uses a “randomized” approach. In the first step 
of the process, points in the space are sampled at random, and then a tree is constructed 
by linking the sampled points with edges. The tree’s potential to reach new spots that 
have never been sampled increases as the tree continues to mature. As soon as it reaches 
its objective, it navigates the tree in reverse, looking for the most direct route from the 
beginning to the end.

Numerous enhancements to RRT, such as RRT-Connect, RRT*, and Bi-directional 
RRT (Bi-RRT), have been developed and implemented. RRT* is an extension of RRT that 
employs heuristics to select nodes more likely to lead to the objective. RRT was originally 
developed to determine which nodes are most likely to do so. It chooses which nodes are 
more promising based on a cost function and saves time by avoiding portions of the space 
that have already been searched. It is done to maximize the likelihood of finding useful 
information (Jeong et al., 2019; Li et al., 2014; Naderi et al., 2015; Yu & Xiang, 2021). 
Similarly, Bi-RRT is an RRT extension that generates two distinct trees, one starting at 
the start point and one starting at the goal point. It then looks for a path between the two 
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trees to identify the most efficient route from the beginning to the end of the maze. This 
method is more effective than the RRT technique since it only needs to search half of the 
space, which significantly increases speed (Xinyu et al., 2019).

Overall, RRT and its variants are powerful and flexible algorithms that can be used 
in a wide variety of applications. They are a great choice for path planning in unknown 
or dynamic environments. RRT’s strength is that it uses minimal heuristics and arbitrary 
parameters and does not require state-to-state linkages. This facilitates the application of 
RRTs to non-holonomic and kinodynamic planning (Lavalle & Kuffner, 2001).

However, RRT may have several downsides. First, RRTs can be challenging to tune 
properly and may necessitate numerous tries to determine the ideal configuration. Second, 
RRTs are susceptible to local minima, which means that the algorithm may become stalled 
in a local optimum and unable to progress to a more optimal solution. Lastly, the path 
generated by RRT is typically jagged and not smooth (Abbadi & Matousek, 2014).

Paper Scopes and Objectives

The primary objective of this paper is to enhance the smoothness of the trajectory generated 
by the RRT path planner. A secondary objective is to minimize significant curvature along 
the path, particularly in challenging areas characterized by tight turns or narrow passages. 
The final objective of this study is to ensure path validity and collision avoidance by 
devising an approach that guarantees the generated trajectory remains clear of obstacles 
within the given map environment.

RRT Path Smoothing Strategies

The RRT path smoothing strategies will be discussed in depth—the strategy employed is 
population-based optimization. Figure 1 shows the flowchart of the proposed method. Each 
step in the flowchart will be explained in great detail in the next subsections.

Generating Initial Path Using RRT 

Figure 2 shows the sequence of RRT. The xtree is initialized at the start point. While searching 
for the goal point, the algorithm will sample a random point xrand inside a search space (in 
this case, an occupancy map). The algorithm will find the nearest node xnear inside xtree to 
the sample point xrand. Then, a new node, xnew, is generated along the line connecting xrand 
and the nearest node, with a distance less than the calculated distance. The path between 
xnew and xnear is then checked for collision. If no collision is detected, the new point xnew 
is added to the tree xtree. These steps are repeated until the goal point or the maximum 
iteration is reached. If a goal point is reached, the path 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗   from the start point is traced 
until the goal point.
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Figure 2. RRT algorithm

Figure 1. Flowchart of the proposed solution

1: while xgoal≠ reached do
2: Sample random position xrand inside a map
3: Find nearest point xnear

4: Find a new point xnew along the line between xnear and xrand

5: if isCollision (path) then
6:  continue
7: end if
8: Add xnew to xtree

9: end while
10: return xtree

11: return 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗  
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Figure 3. Initialization population solution

Population Initialization 

Population-based optimization methods constitute a category of computational algorithms 
that derive inspiration from the collective behavior witnessed within natural populations, 
including animal groups and species evolution. The underlying principle intrinsic to these 
methods is the meticulous preservation of a population of candidate solutions, commonly 
referred to as individuals or agents, to methodically explore the vast search space and 
discern the globally optimal solution. 

The population X with a solution size of n is generated. In our case, the first potential 
solution 𝑋𝑋1����⃗    will be the original RRT path 

(𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ �), (2) fuel cost (𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ �), and (3) safety cost (𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �), where 𝑋𝑋𝑖𝑖���⃗  represents the solution within the 

population. p  

It is important to note that the primary objective of this paper is to improve the smoothness of 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ . . The original path 

(𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ �), (2) fuel cost (𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ �), and (3) safety cost (𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �), where 𝑋𝑋𝑖𝑖���⃗  represents the solution within the 

population. p  

It is important to note that the primary objective of this paper is to improve the smoothness of 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ .  consists of p number 
of points (xk, yk), (k = 1,2,3...p) from start to goal point. In order to generate other possible 

Figure 4. Comparison of different types of interpolation modes in MATLAB (adapted from MATLAB, 2020)

solutions inside the population, the 

(𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ �), (2) fuel cost (𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ �), and (3) safety cost (𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �), where 𝑋𝑋𝑖𝑖���⃗  represents the solution within the 

population. p  

It is important to note that the primary objective of this paper is to improve the smoothness of 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ .  points were 
interpolated linearly to produce 100 (x,y) points 
Pcandidate = {(x1, y1) ... (x100, y100)} where the points 
were ranked from start point to goal point. This 
step samples the search space for the optimization 
algorithm. For the next consecutive solutions 𝑋𝑋2����⃗  - 𝑋𝑋𝑛𝑛����⃗    
, p number of points will be randomly selected from 
the search area. Figure 3 shows the initialization of 
population X, where the first individual solution is 
assigned to 

(𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ �), (2) fuel cost (𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ �), and (3) safety cost (𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �), where 𝑋𝑋𝑖𝑖���⃗  represents the solution within the 

population. p  

It is important to note that the primary objective of this paper is to improve the smoothness of 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ . .

Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)

Minimizing significant curvatures around corners, especially in confined spaces, is 
important as they can lead to inaccuracies to achieve a smooth trajectory path. Using the 
MATLAB function, Piecewise Cubic Hermite Interpolating Polynomial (PCHIP), instead 
of the conventional spline approach for point interpolation, as shown in Figure 4, helps 
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address this issue effectively. The cubic interpolant P(x) maintains the shape of the data. 
The slopes at points xj are chosen so that P(x) preserves the data’s shape and respects 
monotonicity. On intervals where the data are uniform, P(x) is also uniform, and at intervals 
where the data have a local extremum, P(x) also has a local extremum (MATLAB, 2020). 

Objective Functions

Objective functions are devised to evaluate the fitness quality of solutions in the population. 
They comprise three essential components for improving global trajectory planning:  
smoothness cost (𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ �), (2) fuel cost (𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ �), and (3) safety cost (𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �), where 𝑋𝑋𝑖𝑖���⃗  represents the solution within the 

population. p  

It is important to note that the primary objective of this paper is to improve the smoothness of 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ . 

 fuel cost (𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ �), (2) fuel cost (𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ �), and (3) safety cost (𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �), where 𝑋𝑋𝑖𝑖���⃗  represents the solution within the 

population. p  

It is important to note that the primary objective of this paper is to improve the smoothness of 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ . 

 and safety cost (𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ �), (2) fuel cost (𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ �), and (3) safety cost (𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �), where 𝑋𝑋𝑖𝑖���⃗  represents the solution within the 

population. p  

It is important to note that the primary objective of this paper is to improve the smoothness of 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ . 

 where (𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ �), (2) fuel cost (𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ �), and (3) safety cost (𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �), where 𝑋𝑋𝑖𝑖���⃗  represents the solution within the 

population. p  

It is important to note that the primary objective of this paper is to improve the smoothness of 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ . 

 represents 
the solution within the population.

It is important to note that the primary objective of this paper is to improve the 
smoothness of 

(𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ �), (2) fuel cost (𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ �), and (3) safety cost (𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �), where 𝑋𝑋𝑖𝑖���⃗  represents the solution within the 

population. p  

It is important to note that the primary objective of this paper is to improve the smoothness of 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ .  However, to prevent the solution from getting trapped in the global 
minimum, it is crucial to consider the fuel cost and safety cost objectives. Without 
incorporating these two objectives, the resulting solution path may appear smooth but not 
accurately represent a valid trajectory from the start to the goal point. 

It emphasizes the significance of a holistic approach, considering both smoothness 
and practical constraints. The proposed methodology ensures a smooth path and a viable 
and reliable trajectory by addressing the fuel cost and safety cost objectives alongside the 
smoothness objective.

Path Smoothness, 𝒇𝒇𝟏𝟏�𝑿𝑿𝒊𝒊����⃗ �  

Equation 5 can calculate the smoothness of each path. The path is viewed as a sequence 
of segments, and the angle of the triangle it forms is calculated. There is a total segment 
of p – 1, and cos α for each segment i can be determined (Equations 1 to 3).  

𝐴𝐴 = �(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖)2                                        [1] 

 𝐵𝐵 = �(𝑥𝑥𝑖𝑖+2 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝑖𝑖+2 − 𝑦𝑦𝑖𝑖)2                                       [2] 

 𝑐𝑐𝑐𝑐𝑐𝑐 α𝑖𝑖 = 𝐴𝐴2+𝐵𝐵2

2𝐴𝐴𝐵𝐵
                                                        

     [1]𝐴𝐴 = �(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖)2                                        [1] 

 𝐵𝐵 = �(𝑥𝑥𝑖𝑖+2 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝑖𝑖+2 − 𝑦𝑦𝑖𝑖)2                                       [2] 

 𝑐𝑐𝑐𝑐𝑐𝑐 α𝑖𝑖 = 𝐴𝐴2+𝐵𝐵2

2𝐴𝐴𝐵𝐵
                                                        

     [2]

𝐴𝐴 = �(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖)2                                        [1] 

 𝐵𝐵 = �(𝑥𝑥𝑖𝑖+2 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝑖𝑖+2 − 𝑦𝑦𝑖𝑖)2                                       [2] 

 𝑐𝑐𝑐𝑐𝑐𝑐 α𝑖𝑖 = 𝐴𝐴2+𝐵𝐵2

2𝐴𝐴𝐵𝐵
                                                                [3]

The smoothness of the whole path can be calculated by taking the sum of the 
smoothness of all the segments (Equation 4).

α�𝑋𝑋𝑖𝑖���⃗ � = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝−1
𝑘𝑘=1  α𝑖𝑖     

α(𝑋𝑋𝑖𝑖) (Equation 5).  

𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ � = α�𝑋𝑋𝑖𝑖����⃗ �
𝑝𝑝−1

      

       [4]

The path smoothness function is then determined by taking the average value of all 
the 

α�𝑋𝑋𝑖𝑖���⃗ � = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝−1
𝑘𝑘=1  α𝑖𝑖     

α(𝑋𝑋𝑖𝑖) (Equation 5).  

𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ � = α�𝑋𝑋𝑖𝑖����⃗ �
𝑝𝑝−1

      

 (Equation 5). 
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𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ � = α�𝑋𝑋𝑖𝑖����⃗ �
𝑝𝑝−1

                                                     [5] 

It is important to note that a lower value of the smoothness function indicates a smoother path. The 

smoothness function does not have a specific unit of measurement. 

Fuel Cost, 𝒇𝒇𝟐𝟐�𝑿𝑿𝒊𝒊����⃗ � 

The fuel cost is determined by Equation 6. 

 𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ � = ∑  𝑝𝑝−1
𝑘𝑘=1  ��𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑗𝑗 � + (𝑦𝑦𝑘𝑘+1 − 𝑦𝑦𝑘𝑘)                                 [6]  

where (𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘), (𝑘𝑘 = 1,2,3 …𝑝𝑝) is the sequence of points inside path 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗  with a total number of 

sequences 𝑝𝑝. The fuel cost is measured in meters, m. 

Valid Cost, 𝒇𝒇𝟑𝟑�𝑿𝑿𝒊𝒊����⃗ �  

The validity of the path sequence is examined according to Equation 7 to ensure the robot's safety during 

navigation. A considerable penalty β is imposed on the cost function if the distance between the point 

�𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 � and the obstacle 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐  is smaller than the specified safety distance 𝑑𝑑𝑐𝑐 . There is no unit for this 

objective function. 

 𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ � = �β            𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 ≤ 𝑑𝑑𝑐𝑐
0           𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 ≥ 𝑑𝑑𝑐𝑐

                                                [7]    

The total cost function for each solution 𝑋𝑋𝑖𝑖���⃗  is determined by Equation 8. 

 𝑓𝑓�𝑋𝑋𝑖𝑖���⃗ � = 𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ � + 𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ � ∗ �1 + 𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ ��                                   [8]  

The resultant path example solution for 𝑋𝑋1 to 𝑋𝑋3 is shown in Figure 5.  

        [5]

It is important to note that a lower value of the smoothness function indicates a smoother 
path. The smoothness function does not have a specific unit of measurement.

Fuel Cost, 

𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ � = α�𝑋𝑋𝑖𝑖����⃗ �
𝑝𝑝−1

                                                     [5] 

It is important to note that a lower value of the smoothness function indicates a smoother path. The 

smoothness function does not have a specific unit of measurement. 

Fuel Cost, 𝒇𝒇𝟐𝟐�𝑿𝑿𝒊𝒊����⃗ � 

The fuel cost is determined by Equation 6. 

 𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ � = ∑  𝑝𝑝−1
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The validity of the path sequence is examined according to Equation 7 to ensure the robot’s 
safety during navigation. A considerable penalty β is imposed on the cost function if the 
distance between the point (xj, yj) and the obstacle dobs is smaller than the specified safety 
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Figure 5. Example of initialization of population for 
X1 to X3 (zoomed)
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The resultant path example solution for 
X1 to X3 is shown in Figure 5. 

Whale Optimization Algorithm (WOA)

The optimization algorithm can be 
employed after initializing the population 
and specifying the objective functions. This 
paper presents the application of the WOA 
as the chosen optimization method.

WOA was initially proposed by Mirjalili 
and Lewis (2016). It is an optimization 
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algorithm that inspires humpback whales. Once they have discovered their target, humpback 
whales can encircle it. The WOA approach operates under the premise that the current best 
candidate solution is either the prey of interest or is very near to the optimal because the 
placement of the optimal design inside the search space is a priori unknown. Once the best 
search agent has been selected, the remaining search agents will attempt to draw closer to 
it. This behavior is demonstrated through Equations 9 and 10:

𝐷𝐷��⃗ = �𝐶𝐶 ⋅ 𝑋𝑋∗����⃗ (𝑡𝑡) − �⃗�𝑋(𝑡𝑡)�                                                     [9]  

 �⃗�𝑋(𝑡𝑡 + 1) = 𝑋𝑋∗����⃗ (𝑡𝑡) − 𝐴𝐴.𝐷𝐷��⃗                                                  [10] 

where 𝑡𝑡 indicates the current iteration, 𝐴𝐴 and 𝐶𝐶 are coefficient vectors, 𝑋𝑋∗ is the position vector of the 

best solution obtained so far, and  �⃗�𝑋 is the position vector. It is important to note that 𝑋𝑋∗ should be 
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Bubble-net Aattacking Method (Exploitation Phase) 

In order to mathematically model the bubble-net behavior of humpback whales, two 
approaches are designed as follows:
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 is a random number in the interval  
[–a,a] where a is decreased from 2 to 0 throughout iterations.

Spiral Updating Position

A spiral equation is established between the whale’s position and its prey to simulate the 
helix-shaped movement of humpback whales (Equation 13).

�⃗�𝑋(𝑡𝑡 + 1) = 𝐷𝐷′����⃗ ⋅ 𝑒𝑒𝑥𝑥𝑝𝑝𝑜𝑜𝑏𝑏 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐(2π𝑏𝑏) + 𝑋𝑋∗����⃗ (𝑡𝑡)                             [13] 

where 𝐷𝐷′����⃗  is represented in Equation 14 and indicates the distance between the 𝑖𝑖-th whale to the prey 

(best solution obtained so far), 𝑜𝑜 is a constant for defining the shape of the logarithmic spiral, 𝑏𝑏 is a 

random number in [−1,1] and ⋅ is an element-by-element multiplication.  

 𝐷𝐷′����⃗ = �𝑋𝑋∗����⃗ (𝑡𝑡) − �⃗�𝑋(𝑡𝑡)�                                                    [14] 

     [13]

where 
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where 𝐷𝐷′����⃗  is represented in Equation 14 and indicates the distance between the 𝑖𝑖-th whale to the prey 
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 𝐷𝐷′����⃗ = �𝑋𝑋∗����⃗ (𝑡𝑡) − �⃗�𝑋(𝑡𝑡)�                                                    [14] 

 is represented in Equation 14 and indicates the distance between the i-th whale to 
the prey (best solution obtained so far), b is a constant for defining the shape of the logarithmic 
spiral, l is a random number in [–1,1] and . is an element-by-element multiplication. 
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where 𝐷𝐷′����⃗  is represented in Equation 14 and indicates the distance between the 𝑖𝑖-th whale to the prey 

(best solution obtained so far), 𝑜𝑜 is a constant for defining the shape of the logarithmic spiral, 𝑏𝑏 is a 

random number in [−1,1] and ⋅ is an element-by-element multiplication.  

 𝐷𝐷′����⃗ = �𝑋𝑋∗����⃗ (𝑡𝑡) − �⃗�𝑋(𝑡𝑡)�                                                    [14]        [14]

Humpback whales swim simultaneously in a diminishing circle and spiral pattern 
around their prey. It is assumed that there is a 50% likelihood of picking either the shrinking 
encirclement mechanism or the spiral model to update the whales’ position to characterize 
this concurrent behavior. In addition to the bubble-net method, humpback whales search 
for prey randomly. The mathematical model of the search is as follows.

Search for Prey (Exploration Phase)

Value  �𝐴𝐴� > 1 emphasizes exploration and permits the WOA algorithm to perform a global search. The 

mathematical model looks like this (Equations 15 and 16): 
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where Xrand is a random position vector (a random whale) chosen from the current population.

Proposed Modification

In order to further improve the smoothness of the path, an adaptive value of 𝐶𝐶 

𝐷𝐷��⃗  

�⃗�𝑋(𝑡𝑡 + 1) 

 is proposed 
based on the occupancy of the X* points instead of a constant number. The occupancy of 
a grid point inside an occupancy map is shown in Equation 17, where 0 is considered free 
space, 1 is considered occupied space and –1 is considered an unknown space. The constant 
value 2 is replaced with Equation 18, which means that 

𝐶𝐶 

𝐷𝐷��⃗  

�⃗�𝑋(𝑡𝑡 + 1) 

 and consequently 

𝐶𝐶 

𝐷𝐷��⃗  

�⃗�𝑋(𝑡𝑡 + 1)  is 
only updated when the occupancy of the point is free space or an unknown space. The 
modified equation of C is shown in Equation 19.

𝑐𝑐𝑐𝑐𝑐𝑐𝑋𝑋∗(𝑡𝑡)���������������⃗ ∪ 𝑀𝑀 =  �
0                 𝑓𝑓𝑟𝑟𝑒𝑒𝑒𝑒 𝑐𝑐𝑝𝑝𝑎𝑎𝑐𝑐𝑒𝑒
1        𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑝𝑝𝑖𝑖𝑒𝑒𝑑𝑑 𝑐𝑐𝑝𝑝𝑎𝑎𝑐𝑐𝑒𝑒
−1      𝑜𝑜𝑛𝑛𝑘𝑘𝑛𝑛𝑐𝑐𝑢𝑢𝑛𝑛 𝑐𝑐𝑝𝑝𝑎𝑎𝑐𝑐𝑒𝑒

                                   [17] 

 𝑢𝑢��⃗ = 1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑋𝑋∗(𝑡𝑡)���������������⃗                                                        [18] 
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−1      𝑜𝑜𝑛𝑛𝑘𝑘𝑛𝑛𝑐𝑐𝑢𝑢𝑛𝑛 𝑐𝑐𝑝𝑝𝑎𝑎𝑐𝑐𝑒𝑒

                                   [17] 

 𝑢𝑢��⃗ = 1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑋𝑋∗(𝑡𝑡)���������������⃗                                                        [18] 

 𝐶𝐶 = 𝑢𝑢��⃗ ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑( )                     

        [18]
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−1      𝑜𝑜𝑛𝑛𝑘𝑘𝑛𝑛𝑐𝑐𝑢𝑢𝑛𝑛 𝑐𝑐𝑝𝑝𝑎𝑎𝑐𝑐𝑒𝑒

                                   [17] 

 𝑢𝑢��⃗ = 1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑋𝑋∗(𝑡𝑡)���������������⃗                                                        [18] 

 𝐶𝐶 = 𝑢𝑢��⃗ ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑( )                            [19] 

The algorithm for the WOA is shown in Figure 6. The maximum iteration number tmax 
is set to 20 for all the experiments.

EXPERIMENTAL SETUP AND PERFORMANCE EVALUATION 

An experimental setup was devised to assess the proposed method’s robustness. Two 
factors were varied in the environment: the start-goal points and the randomness of RRT 



2336 Pertanika J. Sci. & Technol. 32 (5): 2327 - 2342 (2024)

Izzati Saleh, Nuradlin Borhan and Wan Rahiman

path solutions. The algorithm’s versatility and robustness in accommodating different 
configurations can be evaluated by altering the start-goal points.

The RRT algorithm generates paths based on random sampling, resulting in potential 
variations with each execution. The Random Number Generator (RNG) seeds were saved 
for data collection to ensure the planned path’s reproducibility. Three sets of RNG seeds 
were selected to test the algorithm’s robustness. The initial solution within the population, 
denoted as X, was recorded to facilitate a fair performance comparison among optimization 
algorithms. This guarantees that all optimization algorithms start with the same set of 
solutions and the same population size for each trial.

Environment Setup

Figures 7 and 8 illustrate the six different environmental setups used in the experiment. The 
occupancy map is based on the Engineering Design Lab in the USM Engineering Campus. 
It is inflated with a radius of 0.4m, corresponding to the physical size of the hardware robot. 
This inflation ensures that the initial planned path generated by the RRT algorithm is feasible 
for the robot to navigate. The simulation experiment was implemented using MATLAB ver. 
2020b and executed on a laptop with an Intel Core i7-1065G7 CPU @1.30GHz.

1: Initialize the whales population Xi(i = 1,2…n)
2: Calculate the fitness of each search agent
3: X* = the best search agent
4: while t < tmax do
5:  for each search agent do
6:  Update a, A, C, l and p
7:  if p < 0.5 then
8:   if│A│< 1 then
9:    Update the position of the current search agnt by eq. (10)
10:   else if │A│ ≥ 1 then
11:    Select random search agent xrand

12:    Update the position of the current search agent by Eq. (17)
13:   end if
14:  else if p ≥ 0.5 then
15:   Update the position of the current search by using Eq. (14)
16:  end if
17: end for
18: Check if any search agent goes beyond the search space and amend it
19:  Plot path using PCHIP
20: Calculate the fitness of each search agent
21: Update X* if there is a better solution
22: end while
21: return X*

Figure 6. RRT-WOA Algorithm
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Benchmark Test

A performance evaluation and comparison were conducted to determine whether the 
proposed method (denoted as WOA (modified) onwards) performs better in smoothing the 
RRT path than other population-based optimization algorithms, namely PSO, ABC, and FA. 
Table 1 presents the parameters used in the performance comparison of these algorithms.

The evaluation focused on key metrics to assess the effectiveness and efficiency of 
these algorithms. The metrics analyzed included the average optimization time, the mean 
smoothness of the resulting paths, and the percentage improvement achieved in path 
smoothing.

Figure 7. Generated RRT for Path 1 (Start point:(5.3,9.0) and Goal point: (8.5,12.0)) using (a) RNG 1, (b) 
RNG 2, and (c) RNG 3 *for ease of viewing, all plot legend used the same indicator

Figure 8. Generated RRT for Path 2 (Start Point: (6.0,2.0) and Goal point: (6.3,9.5)) using (a) RNG 1, (b) 
RNG 2, and (c) RNG 3 *for ease of viewing, all plot legend used the same indicator

(a) (b) (c)

(a) (b) (c)
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RESULTS AND DISCUSSION 

Benchmark Performance Analysis

The first benchmark test evaluated the optimization time of multiple algorithms. Figure 9 
shows that WOA (modified) achieves the lowest median and second smallest spread for 

Table 1
Benchmark test parameters

Algorithm Parameters Values 

Common 
Population size, 𝑛𝑛 30 
Number of iterations, 𝑡𝑡𝑚𝑚𝑎𝑎𝑥𝑥  20 

WOA (Mirjalili & Lewis, 2016) 
Coefficient vector, 𝐶𝐶  2 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑( ) 

Coefficient vector, 𝐴𝐴 2�⃗�𝑎 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑( ) − �⃗�𝑎 
Logarithmic spiral, 𝑏𝑏 [−1,1] 

WOA (modified) 
Coefficient vector, 𝐶𝐶  𝑢𝑢��⃗ ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑( ) 

Coefficient vector, 𝐴𝐴 2�⃗�𝑎 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑( ) − �⃗�𝑎 
Logarithmic spiral, 𝑏𝑏 [−1,1] 

PSO (Heris, 2017) 
Cognitive component, 𝑐𝑐1 1.5 
Social component, 𝑐𝑐2 1.5 

ABC (Heris, 2020) 
Inertia weight, 𝑢𝑢𝑖𝑖  1 
Number of employed bees 𝑛𝑛 
Number of onlooker bees 𝑛𝑛 

FA (Yang, 2009) 

Number of scout bees 𝑛𝑛 
Trial limit, 𝐿𝐿 0.6𝑚𝑚𝑛𝑛   ∗  
Mutation number, 𝜙𝜙 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑([−1,1]) 
Attraction coefficient, β0 2 
Absorption coefficient, γ 1 

 

Figure 9. Boxplot analysis of optimization time 
for various optimization algorithms (lower values 
indicate better performance)

optimization time, indicating superior and 
consistent performance. WOA follows with 
the second-lowest median and a smaller 
spread. PSO demonstrates a slightly higher 
median and the smallest spread, indicating 
relatively better and consistent performance. 
ABC performs competitively with a higher 
median and small spread. FA exhibits the 
highest median and largest spread, indicating 
lower performance and greater variability.

The second benchmark test evaluated 
multiple optimization algorithms based on 
path smoothness. From the boxplot shown 
in Figure 10, WOA (modified) demonstrates 
the lowest median and the smallest spread, 
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indicating better and more consistent performance. PSO shows a slightly higher median with 
a small spread, while ABC exhibits the highest median and the largest spread, indicating 
relatively poorer performance with more variability. FA falls in between, with a median 
higher than PSO but lower than ABC and a slightly larger spread than PSO.

The third benchmark test evaluated multiple optimization algorithms based on their 
ability to improve the smoothness of the initial RRT path. From boxplot data in Figure 
11, WOA (modified) demonstrates the highest median and the smallest spread, indicating 

Figure 10. Boxplot analysis of optimization results in 
path smoothness for various optimization algorithms 
(lower values indicate better performance)

Figure 11. Boxplot analysis of optimization 
percentage improvement in path smoothness for 
various optimization algorithms (higher values 
indicate better performance)

Figure 12. Radar chart for performance ranking (best to 
worst: WOA (modified), WOA, PSO, ABC & FA)

the best improvement percentage and most 
consistent performance. On the other hand, 
FA shows the lowest median with a smaller 
spread, suggesting relatively poorer but 
more consistent performance. PSO and 
ABC exhibit larger spreads, indicating 
more variability in their results, with PSO 
having a higher percentage of improvement 
compared to ABC.

The  r e su l t s  o f  t he  benchmark 
performance test were visualized using a 
radar chart, as depicted in Figure 12. The 
chart concisely summarizes the algorithm 
rankings based on their overall performance. 
According to the plot, the algorithm that 

WOA 
(modified)

FA

WOA

PSO ABC



2340 Pertanika J. Sci. & Technol. 32 (5): 2327 - 2342 (2024)

Izzati Saleh, Nuradlin Borhan and Wan Rahiman

achieved the highest overall performance was WOA (modified), closely followed by WOA. 
PSO attained the third rank, while ABC and FA demonstrated the lowest performance 
among the tested algorithms. These rankings offer a clear representation of the relative 
performance of each algorithm in the benchmark test.

Results of Smoothed RRT Path

The result of the smoothed RRT path using WOA is shown in Figure 13 for Path 1 and 
Figure 14 for Path 2. From Figures 13 and 14, it could be observed that the optimized 
path (labeled with an orange line) is able to smooth out the original RRT path while still 
maintaining its path validity. 

Figure 14. Smoothed RRT for Path 1 for Path 2 (Start Point: (6.0,2.0) and Goal point: (6.3,9.5)) using (a) 
RNG 1, (b) RNG 2, and (c) RNG 3 *for ease of viewing, all plot legend used the same indicator

Figure 13. Smoothed RRT for Path 1 (Start point:(5.3,9.0) and Goal point: (8.5,12.0)) using (a) RNG 1, (b) 
RNG 2, and (c) RNG 3 *for ease of viewing, all plot legend used the same indicator

(a) (b) (c)

(a) (b) (c)
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CONCLUSION 

In conclusion, this research has successfully addressed the challenges of using the RRT 
algorithm as a path planner. By integrating the RRT path planner with a modified version of 
the WOA (RRT-WOA), significant improvements have been made in trajectory smoothness 
and path curvature reduction. The novel approach of incorporating parameter variation 
(𝐶𝐶 

𝐷𝐷��⃗  

�⃗�𝑋(𝑡𝑡 + 1) 

) in the modified WOA algorithm has effectively optimized trajectory smoothness. 
Additionally, using Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) for point 
interpolation has further contributed to smoothing generated paths. The modified WOA 
algorithm has demonstrated its superiority over popular population-based optimization 
algorithms such as PSO, ABC, and FA through a comprehensive comparative analysis. 
The WOA (modified) algorithm outperformed these alternatives in terms of optimization 
time, trajectory smoothness, and improvement from the initial guess. 

FUTURE WORKS

In future research, we hope to fine-tune the updated equations and parameters so that the 
proposed equation applies to all path types.
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