
Pertanika J. Sci. & Technol. 32 (5): 2327 - 2342 (2024)

Journal homepage: http://www.pertanika.upm.edu.my/

© Universiti Putra Malaysia Press

SCIENCE & TECHNOLOGY

ISSN: 0128-7680
e-ISSN: 2231-8526

Article history:
Received: 15 November 2023
Accepted: 28 February 2024
Published: 26 August 2024

ARTICLE INFO

DOI: https://doi.org/10.47836/pjst.32.5.22

E-mail addresses:
izzatisaleh@student.usm.my (Izzati Saleh)
nuradlinnadhirahb@student.usm.my (Nuradlin Borhan)
wanrahiman@usm.my (Wan Rahiman)
* Corresponding author

Smoothing RRT Path for Mobile Robot Navigation Using Bio-
inspired Optimization Method

Izzati Saleh1, Nuradlin Borhan1 and Wan Rahiman1,2,3*
1School of Electric & Electronic Engineering, Universiti Sains Malaysia Engineering Campus, 14300 Nibong
Tebal, Pulau Pinang, Malaysia
2Cluster of Smart Port and Logistics Technology (COSPALT), Universiti Sains Malaysia Engineering Campus,
14300 Nibong Tebal, Pulau Pinang, Malaysia
3Daffodil Robotics Lab, Department of Computer Science and Engineering, Daffodil International University,
Dhaka, Bangladesh

ABSTRACT

This research addresses the challenges of using the Rapidly Exploring Random Tree (RRT)
algorithm as a mobile robot path planner. While RRT is known for its flexibility and wide
applicability, it has limitations, including careful tuning, susceptibility to local minima, and
generating jagged paths. The main objective is to improve the smoothness of RRT-generated
trajectories and reduce significant path curvature. A novel approach is proposed to achieve
these, integrating the RRT path planner with a modified version of the Whale Optimization
Algorithm (RRT-WOA). The modified WOA algorithm incorporates parameter variation (𝐶𝐶)
specifically designed to optimize trajectory smoothness. Additionally, Piecewise Cubic Hermite
Interpolating Polynomial (PCHIP) instead of conventional splines for point interpolation
further smoothes the generated paths. The modified WOA algorithm is thoroughly evaluated
through a comprehensive comparative analysis, outperforming other popular population-based
optimization algorithms such as Particle Swarm Optimization (PSO), Artificial Bee Colony
(ABC), and Firefly Algorithm (FA) in terms of optimization time, trajectory smoothness, and
improvement from the initial guess. This research contributes a refined trajectory planning

approach and highlights the competitive
advantage of the modified WOA algorithm
in achieving smoother and more efficient
trajectories compared to existing methods.

Keywords: Bio-inspired optimization, mobile robot
navigation, obstacle avoidance, optimization, path
planning, path smoothing, RRT

2328 Pertanika J. Sci. & Technol. 32 (5): 2327 - 2342 (2024)

Izzati Saleh, Nuradlin Borhan and Wan Rahiman

INTRODUCTION

There are four navigation difficulties in robotics: sensing, localization, motion control,
and path planning. Path planning may be argued to be the most significant element for
navigation procedures. It is the process of determining a collision-free path in a given
environment, which is often cluttered in the real world (Alam & Rafique, 2015; Dao et
al., 2016; Karur et al., 2021).

Since mobile robots are utilized in a variety of applications, researchers have devised
ways to effectively adapt to their needs and overcome some of the key obstacles encountered
while implementing fully or partially autonomous navigation in a cluttered environment
(Dosoftei et al., 2021; Galli et al., 2017; Mac et al., 2016; Zhou et al., 2019). In order
to simplify the path planning problem and ensure that the robot runs/moves smoothly
in a cluttered environment while avoiding obstacles, the configuration space must be
matched with the algorithm. Multiple path-planning and path-finding techniques exist,
with their usefulness depending on the system’s kinematics, the environment’s dynamics,
the computational capabilities of the robot, and the availability of input from sensors and
other sources. The trade-offs between algorithm performance and complexity also rely on
the use case.

Research in robotics, particularly in the subfield of autonomous navigation, significantly
emphasizes the concept of robot path planning. Path planning algorithms build trajectories
for robots to follow so that they can safely and effectively reach their destinations.

The Rapidly Exploring Random Tree (RRT) method is one of the most well-known
approaches to path design. This sampling-based motion planning algorithm employs a
“randomized” technique to explore the space for obstacles and generate a tree of possible
paths. RRT was given its name because it uses a “randomized” approach. In the first step
of the process, points in the space are sampled at random, and then a tree is constructed
by linking the sampled points with edges. The tree’s potential to reach new spots that
have never been sampled increases as the tree continues to mature. As soon as it reaches
its objective, it navigates the tree in reverse, looking for the most direct route from the
beginning to the end.

Numerous enhancements to RRT, such as RRT-Connect, RRT*, and Bi-directional
RRT (Bi-RRT), have been developed and implemented. RRT* is an extension of RRT that
employs heuristics to select nodes more likely to lead to the objective. RRT was originally
developed to determine which nodes are most likely to do so. It chooses which nodes are
more promising based on a cost function and saves time by avoiding portions of the space
that have already been searched. It is done to maximize the likelihood of finding useful
information (Jeong et al., 2019; Li et al., 2014; Naderi et al., 2015; Yu & Xiang, 2021).
Similarly, Bi-RRT is an RRT extension that generates two distinct trees, one starting at
the start point and one starting at the goal point. It then looks for a path between the two

2329Pertanika J. Sci. & Technol. 32 (5): 2327 - 2342 (2024)

Smoothing RRT Path Using Optimization Method

trees to identify the most efficient route from the beginning to the end of the maze. This
method is more effective than the RRT technique since it only needs to search half of the
space, which significantly increases speed (Xinyu et al., 2019).

Overall, RRT and its variants are powerful and flexible algorithms that can be used
in a wide variety of applications. They are a great choice for path planning in unknown
or dynamic environments. RRT’s strength is that it uses minimal heuristics and arbitrary
parameters and does not require state-to-state linkages. This facilitates the application of
RRTs to non-holonomic and kinodynamic planning (Lavalle & Kuffner, 2001).

However, RRT may have several downsides. First, RRTs can be challenging to tune
properly and may necessitate numerous tries to determine the ideal configuration. Second,
RRTs are susceptible to local minima, which means that the algorithm may become stalled
in a local optimum and unable to progress to a more optimal solution. Lastly, the path
generated by RRT is typically jagged and not smooth (Abbadi & Matousek, 2014).

Paper Scopes and Objectives

The primary objective of this paper is to enhance the smoothness of the trajectory generated
by the RRT path planner. A secondary objective is to minimize significant curvature along
the path, particularly in challenging areas characterized by tight turns or narrow passages.
The final objective of this study is to ensure path validity and collision avoidance by
devising an approach that guarantees the generated trajectory remains clear of obstacles
within the given map environment.

RRT Path Smoothing Strategies

The RRT path smoothing strategies will be discussed in depth—the strategy employed is
population-based optimization. Figure 1 shows the flowchart of the proposed method. Each
step in the flowchart will be explained in great detail in the next subsections.

Generating Initial Path Using RRT

Figure 2 shows the sequence of RRT. The xtree is initialized at the start point. While searching
for the goal point, the algorithm will sample a random point xrand inside a search space (in
this case, an occupancy map). The algorithm will find the nearest node xnear inside xtree to
the sample point xrand. Then, a new node, xnew, is generated along the line connecting xrand
and the nearest node, with a distance less than the calculated distance. The path between
xnew and xnear is then checked for collision. If no collision is detected, the new point xnew
is added to the tree xtree. These steps are repeated until the goal point or the maximum
iteration is reached. If a goal point is reached, the path 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ from the start point is traced
until the goal point.

2330 Pertanika J. Sci. & Technol. 32 (5): 2327 - 2342 (2024)

Izzati Saleh, Nuradlin Borhan and Wan Rahiman

Figure 2. RRT algorithm

Figure 1. Flowchart of the proposed solution

1: while xgoal≠ reached do
2: Sample random position xrand inside a map
3: Find nearest point xnear

4: Find a new point xnew along the line between xnear and xrand

5: if isCollision (path) then
6: continue
7: end if
8: Add xnew to xtree

9: end while
10: return xtree

11: return 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗

2331Pertanika J. Sci. & Technol. 32 (5): 2327 - 2342 (2024)

Smoothing RRT Path Using Optimization Method

Figure 3. Initialization population solution

Population Initialization

Population-based optimization methods constitute a category of computational algorithms
that derive inspiration from the collective behavior witnessed within natural populations,
including animal groups and species evolution. The underlying principle intrinsic to these
methods is the meticulous preservation of a population of candidate solutions, commonly
referred to as individuals or agents, to methodically explore the vast search space and
discern the globally optimal solution.

The population X with a solution size of n is generated. In our case, the first potential
solution 𝑋𝑋1����⃗ will be the original RRT path

(𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ �), (2) fuel cost (𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ �), and (3) safety cost (𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �), where 𝑋𝑋𝑖𝑖���⃗ represents the solution within the

population. p

It is important to note that the primary objective of this paper is to improve the smoothness of 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ . . The original path

(𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ �), (2) fuel cost (𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ �), and (3) safety cost (𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �), where 𝑋𝑋𝑖𝑖���⃗ represents the solution within the

population. p

It is important to note that the primary objective of this paper is to improve the smoothness of 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ . consists of p number
of points (xk, yk), (k = 1,2,3...p) from start to goal point. In order to generate other possible

Figure 4. Comparison of different types of interpolation modes in MATLAB (adapted from MATLAB, 2020)

solutions inside the population, the

(𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ �), (2) fuel cost (𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ �), and (3) safety cost (𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �), where 𝑋𝑋𝑖𝑖���⃗ represents the solution within the

population. p

It is important to note that the primary objective of this paper is to improve the smoothness of 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ . points were
interpolated linearly to produce 100 (x,y) points
Pcandidate = {(x1, y1) ... (x100, y100)} where the points
were ranked from start point to goal point. This
step samples the search space for the optimization
algorithm. For the next consecutive solutions 𝑋𝑋2����⃗ - 𝑋𝑋𝑛𝑛����⃗
, p number of points will be randomly selected from
the search area. Figure 3 shows the initialization of
population X, where the first individual solution is
assigned to

(𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ �), (2) fuel cost (𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ �), and (3) safety cost (𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �), where 𝑋𝑋𝑖𝑖���⃗ represents the solution within the

population. p

It is important to note that the primary objective of this paper is to improve the smoothness of 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ . .

Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)

Minimizing significant curvatures around corners, especially in confined spaces, is
important as they can lead to inaccuracies to achieve a smooth trajectory path. Using the
MATLAB function, Piecewise Cubic Hermite Interpolating Polynomial (PCHIP), instead
of the conventional spline approach for point interpolation, as shown in Figure 4, helps

Sample points
PCHIP
Cubic spline

-3 -2 -1 0 1 2 3

1.5

1.0

0.5

0.0

-0.5

-1

-1.5

2332 Pertanika J. Sci. & Technol. 32 (5): 2327 - 2342 (2024)

Izzati Saleh, Nuradlin Borhan and Wan Rahiman

address this issue effectively. The cubic interpolant P(x) maintains the shape of the data.
The slopes at points xj are chosen so that P(x) preserves the data’s shape and respects
monotonicity. On intervals where the data are uniform, P(x) is also uniform, and at intervals
where the data have a local extremum, P(x) also has a local extremum (MATLAB, 2020).

Objective Functions

Objective functions are devised to evaluate the fitness quality of solutions in the population.
They comprise three essential components for improving global trajectory planning:
smoothness cost (𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ �), (2) fuel cost (𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ �), and (3) safety cost (𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �), where 𝑋𝑋𝑖𝑖���⃗ represents the solution within the

population. p

It is important to note that the primary objective of this paper is to improve the smoothness of 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ .

 fuel cost (𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ �), (2) fuel cost (𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ �), and (3) safety cost (𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �), where 𝑋𝑋𝑖𝑖���⃗ represents the solution within the

population. p

It is important to note that the primary objective of this paper is to improve the smoothness of 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ .

 and safety cost (𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ �), (2) fuel cost (𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ �), and (3) safety cost (𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �), where 𝑋𝑋𝑖𝑖���⃗ represents the solution within the

population. p

It is important to note that the primary objective of this paper is to improve the smoothness of 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ .

 where (𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ �), (2) fuel cost (𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ �), and (3) safety cost (𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �), where 𝑋𝑋𝑖𝑖���⃗ represents the solution within the

population. p

It is important to note that the primary objective of this paper is to improve the smoothness of 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ .

 represents
the solution within the population.

It is important to note that the primary objective of this paper is to improve the
smoothness of

(𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ �), (2) fuel cost (𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ �), and (3) safety cost (𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �), where 𝑋𝑋𝑖𝑖���⃗ represents the solution within the

population. p

It is important to note that the primary objective of this paper is to improve the smoothness of 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ . However, to prevent the solution from getting trapped in the global
minimum, it is crucial to consider the fuel cost and safety cost objectives. Without
incorporating these two objectives, the resulting solution path may appear smooth but not
accurately represent a valid trajectory from the start to the goal point.

It emphasizes the significance of a holistic approach, considering both smoothness
and practical constraints. The proposed methodology ensures a smooth path and a viable
and reliable trajectory by addressing the fuel cost and safety cost objectives alongside the
smoothness objective.

Path Smoothness, 𝒇𝒇𝟏𝟏�𝑿𝑿𝒊𝒊����⃗ �

Equation 5 can calculate the smoothness of each path. The path is viewed as a sequence
of segments, and the angle of the triangle it forms is calculated. There is a total segment
of p – 1, and cos α for each segment i can be determined (Equations 1 to 3).

𝐴𝐴 = �(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖)2 [1]

 𝐵𝐵 = �(𝑥𝑥𝑖𝑖+2 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝑖𝑖+2 − 𝑦𝑦𝑖𝑖)2 [2]

 𝑐𝑐𝑐𝑐𝑐𝑐 α𝑖𝑖 = 𝐴𝐴2+𝐵𝐵2

2𝐴𝐴𝐵𝐵

 [1]𝐴𝐴 = �(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖)2 [1]

 𝐵𝐵 = �(𝑥𝑥𝑖𝑖+2 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝑖𝑖+2 − 𝑦𝑦𝑖𝑖)2 [2]

 𝑐𝑐𝑐𝑐𝑐𝑐 α𝑖𝑖 = 𝐴𝐴2+𝐵𝐵2

2𝐴𝐴𝐵𝐵

 [2]

𝐴𝐴 = �(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖)2 [1]

 𝐵𝐵 = �(𝑥𝑥𝑖𝑖+2 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝑖𝑖+2 − 𝑦𝑦𝑖𝑖)2 [2]

 𝑐𝑐𝑐𝑐𝑐𝑐 α𝑖𝑖 = 𝐴𝐴2+𝐵𝐵2

2𝐴𝐴𝐵𝐵
 [3]

The smoothness of the whole path can be calculated by taking the sum of the
smoothness of all the segments (Equation 4).

α�𝑋𝑋𝑖𝑖���⃗ � = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝−1
𝑘𝑘=1 α𝑖𝑖

α(𝑋𝑋𝑖𝑖) (Equation 5).

𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ � = α�𝑋𝑋𝑖𝑖����⃗ �
𝑝𝑝−1

 [4]

The path smoothness function is then determined by taking the average value of all
the

α�𝑋𝑋𝑖𝑖���⃗ � = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝−1
𝑘𝑘=1 α𝑖𝑖

α(𝑋𝑋𝑖𝑖) (Equation 5).

𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ � = α�𝑋𝑋𝑖𝑖����⃗ �
𝑝𝑝−1

 (Equation 5).

2333Pertanika J. Sci. & Technol. 32 (5): 2327 - 2342 (2024)

Smoothing RRT Path Using Optimization Method

𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ � = α�𝑋𝑋𝑖𝑖����⃗ �
𝑝𝑝−1

 [5]

It is important to note that a lower value of the smoothness function indicates a smoother path. The

smoothness function does not have a specific unit of measurement.

Fuel Cost, 𝒇𝒇𝟐𝟐�𝑿𝑿𝒊𝒊����⃗ �

The fuel cost is determined by Equation 6.

 𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ � = ∑ 𝑝𝑝−1
𝑘𝑘=1  ��𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑗𝑗 � + (𝑦𝑦𝑘𝑘+1 − 𝑦𝑦𝑘𝑘) [6]

where (𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘), (𝑘𝑘 = 1,2,3 …𝑝𝑝) is the sequence of points inside path 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ with a total number of

sequences 𝑝𝑝. The fuel cost is measured in meters, m.

Valid Cost, 𝒇𝒇𝟑𝟑�𝑿𝑿𝒊𝒊����⃗ �

The validity of the path sequence is examined according to Equation 7 to ensure the robot's safety during

navigation. A considerable penalty β is imposed on the cost function if the distance between the point

�𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 � and the obstacle 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 is smaller than the specified safety distance 𝑑𝑑𝑐𝑐 . There is no unit for this

objective function.

 𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ � = �β 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 ≤ 𝑑𝑑𝑐𝑐
0 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 ≥ 𝑑𝑑𝑐𝑐

 [7]

The total cost function for each solution 𝑋𝑋𝑖𝑖���⃗ is determined by Equation 8.

 𝑓𝑓�𝑋𝑋𝑖𝑖���⃗ � = 𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ � + 𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ � ∗ �1 + 𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �� [8]

The resultant path example solution for 𝑋𝑋1 to 𝑋𝑋3 is shown in Figure 5.

 [5]

It is important to note that a lower value of the smoothness function indicates a smoother
path. The smoothness function does not have a specific unit of measurement.

Fuel Cost,

𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ � = α�𝑋𝑋𝑖𝑖����⃗ �
𝑝𝑝−1

 [5]

It is important to note that a lower value of the smoothness function indicates a smoother path. The

smoothness function does not have a specific unit of measurement.

Fuel Cost, 𝒇𝒇𝟐𝟐�𝑿𝑿𝒊𝒊����⃗ �

The fuel cost is determined by Equation 6.

 𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ � = ∑ 𝑝𝑝−1
𝑘𝑘=1  ��𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑗𝑗 � + (𝑦𝑦𝑘𝑘+1 − 𝑦𝑦𝑘𝑘) [6]

where (𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘), (𝑘𝑘 = 1,2,3 …𝑝𝑝) is the sequence of points inside path 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ with a total number of

sequences 𝑝𝑝. The fuel cost is measured in meters, m.

Valid Cost, 𝒇𝒇𝟑𝟑�𝑿𝑿𝒊𝒊����⃗ �

The validity of the path sequence is examined according to Equation 7 to ensure the robot's safety during

navigation. A considerable penalty β is imposed on the cost function if the distance between the point

�𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 � and the obstacle 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 is smaller than the specified safety distance 𝑑𝑑𝑐𝑐 . There is no unit for this

objective function.

 𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ � = �β 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 ≤ 𝑑𝑑𝑐𝑐
0 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 ≥ 𝑑𝑑𝑐𝑐

 [7]

The total cost function for each solution 𝑋𝑋𝑖𝑖���⃗ is determined by Equation 8.

 𝑓𝑓�𝑋𝑋𝑖𝑖���⃗ � = 𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ � + 𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ � ∗ �1 + 𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �� [8]

The resultant path example solution for 𝑋𝑋1 to 𝑋𝑋3 is shown in Figure 5.

The fuel cost is determined by Equation 6.

𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ � = α�𝑋𝑋𝑖𝑖����⃗ �
𝑝𝑝−1

 [5]

It is important to note that a lower value of the smoothness function indicates a smoother path. The

smoothness function does not have a specific unit of measurement.

Fuel Cost, 𝒇𝒇𝟐𝟐�𝑿𝑿𝒊𝒊����⃗ �

The fuel cost is determined by Equation 6.

 𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ � = ∑ 𝑝𝑝−1
𝑘𝑘=1  ��𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑗𝑗 � + (𝑦𝑦𝑘𝑘+1 − 𝑦𝑦𝑘𝑘) [6]

where (𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘), (𝑘𝑘 = 1,2,3 …𝑝𝑝) is the sequence of points inside path 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ with a total number of

sequences 𝑝𝑝. The fuel cost is measured in meters, m.

Valid Cost, 𝒇𝒇𝟑𝟑�𝑿𝑿𝒊𝒊����⃗ �

The validity of the path sequence is examined according to Equation 7 to ensure the robot's safety during

navigation. A considerable penalty β is imposed on the cost function if the distance between the point

�𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 � and the obstacle 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 is smaller than the specified safety distance 𝑑𝑑𝑐𝑐 . There is no unit for this

objective function.

 𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ � = �β 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 ≤ 𝑑𝑑𝑐𝑐
0 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 ≥ 𝑑𝑑𝑐𝑐

 [7]

The total cost function for each solution 𝑋𝑋𝑖𝑖���⃗ is determined by Equation 8.

 𝑓𝑓�𝑋𝑋𝑖𝑖���⃗ � = 𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ � + 𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ � ∗ �1 + 𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �� [8]

The resultant path example solution for 𝑋𝑋1 to 𝑋𝑋3 is shown in Figure 5.

 [6]

where

𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ � = α�𝑋𝑋𝑖𝑖����⃗ �
𝑝𝑝−1

 [5]

It is important to note that a lower value of the smoothness function indicates a smoother path. The

smoothness function does not have a specific unit of measurement.

Fuel Cost, 𝒇𝒇𝟐𝟐�𝑿𝑿𝒊𝒊����⃗ �

The fuel cost is determined by Equation 6.

 𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ � = ∑ 𝑝𝑝−1
𝑘𝑘=1  ��𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑗𝑗 � + (𝑦𝑦𝑘𝑘+1 − 𝑦𝑦𝑘𝑘) [6]

where (𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘), (𝑘𝑘 = 1,2,3 …𝑝𝑝) is the sequence of points inside path 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ with a total number of

sequences 𝑝𝑝. The fuel cost is measured in meters, m.

Valid Cost, 𝒇𝒇𝟑𝟑�𝑿𝑿𝒊𝒊����⃗ �

The validity of the path sequence is examined according to Equation 7 to ensure the robot's safety during

navigation. A considerable penalty β is imposed on the cost function if the distance between the point

�𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 � and the obstacle 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 is smaller than the specified safety distance 𝑑𝑑𝑐𝑐 . There is no unit for this

objective function.

 𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ � = �β 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 ≤ 𝑑𝑑𝑐𝑐
0 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 ≥ 𝑑𝑑𝑐𝑐

 [7]

The total cost function for each solution 𝑋𝑋𝑖𝑖���⃗ is determined by Equation 8.

 𝑓𝑓�𝑋𝑋𝑖𝑖���⃗ � = 𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ � + 𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ � ∗ �1 + 𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �� [8]

The resultant path example solution for 𝑋𝑋1 to 𝑋𝑋3 is shown in Figure 5.

 is the sequence of points inside path

(𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ �), (2) fuel cost (𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ �), and (3) safety cost (𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �), where 𝑋𝑋𝑖𝑖���⃗ represents the solution within the

population. p

It is important to note that the primary objective of this paper is to improve the smoothness of 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ . with a total
number of sequences p. The fuel cost is measured in meters, m.

Valid Cost,

𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ � = α�𝑋𝑋𝑖𝑖����⃗ �
𝑝𝑝−1

 [5]

It is important to note that a lower value of the smoothness function indicates a smoother path. The

smoothness function does not have a specific unit of measurement.

Fuel Cost, 𝒇𝒇𝟐𝟐�𝑿𝑿𝒊𝒊����⃗ �

The fuel cost is determined by Equation 6.

 𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ � = ∑ 𝑝𝑝−1
𝑘𝑘=1  ��𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑗𝑗 � + (𝑦𝑦𝑘𝑘+1 − 𝑦𝑦𝑘𝑘) [6]

where (𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘), (𝑘𝑘 = 1,2,3 …𝑝𝑝) is the sequence of points inside path 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ with a total number of

sequences 𝑝𝑝. The fuel cost is measured in meters, m.

Valid Cost, 𝒇𝒇𝟑𝟑�𝑿𝑿𝒊𝒊����⃗ �

The validity of the path sequence is examined according to Equation 7 to ensure the robot's safety during

navigation. A considerable penalty β is imposed on the cost function if the distance between the point

�𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 � and the obstacle 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 is smaller than the specified safety distance 𝑑𝑑𝑐𝑐 . There is no unit for this

objective function.

 𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ � = �β 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 ≤ 𝑑𝑑𝑐𝑐
0 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 ≥ 𝑑𝑑𝑐𝑐

 [7]

The total cost function for each solution 𝑋𝑋𝑖𝑖���⃗ is determined by Equation 8.

 𝑓𝑓�𝑋𝑋𝑖𝑖���⃗ � = 𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ � + 𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ � ∗ �1 + 𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �� [8]

The resultant path example solution for 𝑋𝑋1 to 𝑋𝑋3 is shown in Figure 5.

The validity of the path sequence is examined according to Equation 7 to ensure the robot’s
safety during navigation. A considerable penalty β is imposed on the cost function if the
distance between the point (xj, yj) and the obstacle dobs is smaller than the specified safety
distance ds. There is no unit for this objective function.

Figure 5. Example of initialization of population for
X1 to X3 (zoomed)

𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ � = α�𝑋𝑋𝑖𝑖����⃗ �
𝑝𝑝−1

 [5]

It is important to note that a lower value of the smoothness function indicates a smoother path. The

smoothness function does not have a specific unit of measurement.

Fuel Cost, 𝒇𝒇𝟐𝟐�𝑿𝑿𝒊𝒊����⃗ �

The fuel cost is determined by Equation 6.

 𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ � = ∑ 𝑝𝑝−1
𝑘𝑘=1  ��𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑗𝑗 � + (𝑦𝑦𝑘𝑘+1 − 𝑦𝑦𝑘𝑘) [6]

where (𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘), (𝑘𝑘 = 1,2,3 …𝑝𝑝) is the sequence of points inside path 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ with a total number of

sequences 𝑝𝑝. The fuel cost is measured in meters, m.

Valid Cost, 𝒇𝒇𝟑𝟑�𝑿𝑿𝒊𝒊����⃗ �

The validity of the path sequence is examined according to Equation 7 to ensure the robot's safety during

navigation. A considerable penalty β is imposed on the cost function if the distance between the point

�𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 � and the obstacle 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 is smaller than the specified safety distance 𝑑𝑑𝑐𝑐 . There is no unit for this

objective function.

 𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ � = �β 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 ≤ 𝑑𝑑𝑐𝑐
0 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 ≥ 𝑑𝑑𝑐𝑐

 [7]

The total cost function for each solution 𝑋𝑋𝑖𝑖���⃗ is determined by Equation 8.

 𝑓𝑓�𝑋𝑋𝑖𝑖���⃗ � = 𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ � + 𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ � ∗ �1 + 𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �� [8]

The resultant path example solution for 𝑋𝑋1 to 𝑋𝑋3 is shown in Figure 5.

 [7]

The total cost function for each solution

𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ � = α�𝑋𝑋𝑖𝑖����⃗ �
𝑝𝑝−1

 [5]

It is important to note that a lower value of the smoothness function indicates a smoother path. The

smoothness function does not have a specific unit of measurement.

Fuel Cost, 𝒇𝒇𝟐𝟐�𝑿𝑿𝒊𝒊����⃗ �

The fuel cost is determined by Equation 6.

 𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ � = ∑ 𝑝𝑝−1
𝑘𝑘=1  ��𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑗𝑗 � + (𝑦𝑦𝑘𝑘+1 − 𝑦𝑦𝑘𝑘) [6]

where (𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘), (𝑘𝑘 = 1,2,3 …𝑝𝑝) is the sequence of points inside path 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ with a total number of

sequences 𝑝𝑝. The fuel cost is measured in meters, m.

Valid Cost, 𝒇𝒇𝟑𝟑�𝑿𝑿𝒊𝒊����⃗ �

The validity of the path sequence is examined according to Equation 7 to ensure the robot's safety during

navigation. A considerable penalty β is imposed on the cost function if the distance between the point

�𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 � and the obstacle 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 is smaller than the specified safety distance 𝑑𝑑𝑐𝑐 . There is no unit for this

objective function.

 𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ � = �β 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 ≤ 𝑑𝑑𝑐𝑐
0 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 ≥ 𝑑𝑑𝑐𝑐

 [7]

The total cost function for each solution 𝑋𝑋𝑖𝑖���⃗ is determined by Equation 8.

 𝑓𝑓�𝑋𝑋𝑖𝑖���⃗ � = 𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ � + 𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ � ∗ �1 + 𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �� [8]

The resultant path example solution for 𝑋𝑋1 to 𝑋𝑋3 is shown in Figure 5.

 is determined by Equation 8.

𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ � = α�𝑋𝑋𝑖𝑖����⃗ �
𝑝𝑝−1

 [5]

It is important to note that a lower value of the smoothness function indicates a smoother path. The

smoothness function does not have a specific unit of measurement.

Fuel Cost, 𝒇𝒇𝟐𝟐�𝑿𝑿𝒊𝒊����⃗ �

The fuel cost is determined by Equation 6.

 𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ � = ∑ 𝑝𝑝−1
𝑘𝑘=1  ��𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑗𝑗 � + (𝑦𝑦𝑘𝑘+1 − 𝑦𝑦𝑘𝑘) [6]

where (𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘), (𝑘𝑘 = 1,2,3 …𝑝𝑝) is the sequence of points inside path 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅���������⃗ with a total number of

sequences 𝑝𝑝. The fuel cost is measured in meters, m.

Valid Cost, 𝒇𝒇𝟑𝟑�𝑿𝑿𝒊𝒊����⃗ �

The validity of the path sequence is examined according to Equation 7 to ensure the robot's safety during

navigation. A considerable penalty β is imposed on the cost function if the distance between the point

�𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 � and the obstacle 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 is smaller than the specified safety distance 𝑑𝑑𝑐𝑐 . There is no unit for this

objective function.

 𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ � = �β 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 ≤ 𝑑𝑑𝑐𝑐
0 𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐 ≥ 𝑑𝑑𝑐𝑐

 [7]

The total cost function for each solution 𝑋𝑋𝑖𝑖���⃗ is determined by Equation 8.

 𝑓𝑓�𝑋𝑋𝑖𝑖���⃗ � = 𝑓𝑓1�𝑋𝑋𝑖𝑖���⃗ � + 𝑓𝑓2�𝑋𝑋𝑖𝑖���⃗ � ∗ �1 + 𝑓𝑓3�𝑋𝑋𝑖𝑖���⃗ �� [8]

The resultant path example solution for 𝑋𝑋1 to 𝑋𝑋3 is shown in Figure 5.
[8]

The resultant path example solution for
X1 to X3 is shown in Figure 5.

Whale Optimization Algorithm (WOA)

The optimization algorithm can be
employed after initializing the population
and specifying the objective functions. This
paper presents the application of the WOA
as the chosen optimization method.

WOA was initially proposed by Mirjalili
and Lewis (2016). It is an optimization

2334 Pertanika J. Sci. & Technol. 32 (5): 2327 - 2342 (2024)

Izzati Saleh, Nuradlin Borhan and Wan Rahiman

algorithm that inspires humpback whales. Once they have discovered their target, humpback
whales can encircle it. The WOA approach operates under the premise that the current best
candidate solution is either the prey of interest or is very near to the optimal because the
placement of the optimal design inside the search space is a priori unknown. Once the best
search agent has been selected, the remaining search agents will attempt to draw closer to
it. This behavior is demonstrated through Equations 9 and 10:

𝐷𝐷��⃗ = �𝐶𝐶 ⋅ 𝑋𝑋∗����⃗ (𝑡𝑡) − �⃗�𝑋(𝑡𝑡)� [9]

 �⃗�𝑋(𝑡𝑡 + 1) = 𝑋𝑋∗����⃗ (𝑡𝑡) − 𝐴𝐴.𝐷𝐷��⃗ [10]

where 𝑡𝑡 indicates the current iteration, 𝐴𝐴 and 𝐶𝐶 are coefficient vectors, 𝑋𝑋∗ is the position vector of the

best solution obtained so far, and �⃗�𝑋 is the position vector. It is important to note that 𝑋𝑋∗ should be

adjusted after each iteration if a better solution exists.

The vectors 𝐴𝐴 and 𝐶𝐶 are calculated as Equations 11 and 12:

 𝐴𝐴 = 2�⃗�𝑎 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() − �⃗�𝑎 [11]

 𝐶𝐶 = 2 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() [12]

where �⃗�𝑎 is linearly decreased from 2 to 0 throughout iterations (in both exploration and exploitation

phases), and 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() is a random vector in [0,1].

 [9] 𝐷𝐷��⃗ = �𝐶𝐶 ⋅ 𝑋𝑋∗����⃗ (𝑡𝑡) − �⃗�𝑋(𝑡𝑡)� [9]

 �⃗�𝑋(𝑡𝑡 + 1) = 𝑋𝑋∗����⃗ (𝑡𝑡) − 𝐴𝐴.𝐷𝐷��⃗ [10]

where 𝑡𝑡 indicates the current iteration, 𝐴𝐴 and 𝐶𝐶 are coefficient vectors, 𝑋𝑋∗ is the position vector of the

best solution obtained so far, and �⃗�𝑋 is the position vector. It is important to note that 𝑋𝑋∗ should be

adjusted after each iteration if a better solution exists.

The vectors 𝐴𝐴 and 𝐶𝐶 are calculated as Equations 11 and 12:

 𝐴𝐴 = 2�⃗�𝑎 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() − �⃗�𝑎 [11]

 𝐶𝐶 = 2 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() [12]

where �⃗�𝑎 is linearly decreased from 2 to 0 throughout iterations (in both exploration and exploitation

phases), and 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() is a random vector in [0,1].

 [10]

where t indicates the current iteration,

𝐷𝐷��⃗ = �𝐶𝐶 ⋅ 𝑋𝑋∗����⃗ (𝑡𝑡) − �⃗�𝑋(𝑡𝑡)� [9]

 �⃗�𝑋(𝑡𝑡 + 1) = 𝑋𝑋∗����⃗ (𝑡𝑡) − 𝐴𝐴.𝐷𝐷��⃗ [10]

where 𝑡𝑡 indicates the current iteration, 𝐴𝐴 and 𝐶𝐶 are coefficient vectors, 𝑋𝑋∗ is the position vector of the

best solution obtained so far, and �⃗�𝑋 is the position vector. It is important to note that 𝑋𝑋∗ should be

adjusted after each iteration if a better solution exists.

The vectors 𝐴𝐴 and 𝐶𝐶 are calculated as Equations 11 and 12:

 𝐴𝐴 = 2�⃗�𝑎 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() − �⃗�𝑎 [11]

 𝐶𝐶 = 2 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() [12]

where �⃗�𝑎 is linearly decreased from 2 to 0 throughout iterations (in both exploration and exploitation

phases), and 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() is a random vector in [0,1].

 X* is the position
vector of the best solution obtained so far, and

𝐷𝐷��⃗ = �𝐶𝐶 ⋅ 𝑋𝑋∗����⃗ (𝑡𝑡) − �⃗�𝑋(𝑡𝑡)� [9]

 �⃗�𝑋(𝑡𝑡 + 1) = 𝑋𝑋∗����⃗ (𝑡𝑡) − 𝐴𝐴.𝐷𝐷��⃗ [10]

where 𝑡𝑡 indicates the current iteration, 𝐴𝐴 and 𝐶𝐶 are coefficient vectors, 𝑋𝑋∗ is the position vector of the

best solution obtained so far, and �⃗�𝑋 is the position vector. It is important to note that 𝑋𝑋∗ should be

adjusted after each iteration if a better solution exists.

The vectors 𝐴𝐴 and 𝐶𝐶 are calculated as Equations 11 and 12:

 𝐴𝐴 = 2�⃗�𝑎 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() − �⃗�𝑎 [11]

 𝐶𝐶 = 2 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() [12]

where �⃗�𝑎 is linearly decreased from 2 to 0 throughout iterations (in both exploration and exploitation

phases), and 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() is a random vector in [0,1].

 is the position vector. It is important to
note that X* should be adjusted after each iteration if a better solution exists.

The vectors

𝐷𝐷��⃗ = �𝐶𝐶 ⋅ 𝑋𝑋∗����⃗ (𝑡𝑡) − �⃗�𝑋(𝑡𝑡)� [9]

 �⃗�𝑋(𝑡𝑡 + 1) = 𝑋𝑋∗����⃗ (𝑡𝑡) − 𝐴𝐴.𝐷𝐷��⃗ [10]

where 𝑡𝑡 indicates the current iteration, 𝐴𝐴 and 𝐶𝐶 are coefficient vectors, 𝑋𝑋∗ is the position vector of the

best solution obtained so far, and �⃗�𝑋 is the position vector. It is important to note that 𝑋𝑋∗ should be

adjusted after each iteration if a better solution exists.

The vectors 𝐴𝐴 and 𝐶𝐶 are calculated as Equations 11 and 12:

 𝐴𝐴 = 2�⃗�𝑎 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() − �⃗�𝑎 [11]

 𝐶𝐶 = 2 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() [12]

where �⃗�𝑎 is linearly decreased from 2 to 0 throughout iterations (in both exploration and exploitation

phases), and 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() is a random vector in [0,1].

 are calculated as Equations 11 and 12:

𝐷𝐷��⃗ = �𝐶𝐶 ⋅ 𝑋𝑋∗����⃗ (𝑡𝑡) − �⃗�𝑋(𝑡𝑡)� [9]

 �⃗�𝑋(𝑡𝑡 + 1) = 𝑋𝑋∗����⃗ (𝑡𝑡) − 𝐴𝐴.𝐷𝐷��⃗ [10]

where 𝑡𝑡 indicates the current iteration, 𝐴𝐴 and 𝐶𝐶 are coefficient vectors, 𝑋𝑋∗ is the position vector of the

best solution obtained so far, and �⃗�𝑋 is the position vector. It is important to note that 𝑋𝑋∗ should be

adjusted after each iteration if a better solution exists.

The vectors 𝐴𝐴 and 𝐶𝐶 are calculated as Equations 11 and 12:

 𝐴𝐴 = 2�⃗�𝑎 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() − �⃗�𝑎 [11]

 𝐶𝐶 = 2 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() [12]

where �⃗�𝑎 is linearly decreased from 2 to 0 throughout iterations (in both exploration and exploitation

phases), and 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() is a random vector in [0,1].

 [11]

𝐷𝐷��⃗ = �𝐶𝐶 ⋅ 𝑋𝑋∗����⃗ (𝑡𝑡) − �⃗�𝑋(𝑡𝑡)� [9]

 �⃗�𝑋(𝑡𝑡 + 1) = 𝑋𝑋∗����⃗ (𝑡𝑡) − 𝐴𝐴.𝐷𝐷��⃗ [10]

where 𝑡𝑡 indicates the current iteration, 𝐴𝐴 and 𝐶𝐶 are coefficient vectors, 𝑋𝑋∗ is the position vector of the

best solution obtained so far, and �⃗�𝑋 is the position vector. It is important to note that 𝑋𝑋∗ should be

adjusted after each iteration if a better solution exists.

The vectors 𝐴𝐴 and 𝐶𝐶 are calculated as Equations 11 and 12:

 𝐴𝐴 = 2�⃗�𝑎 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() − �⃗�𝑎 [11]

 𝐶𝐶 = 2 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() [12]

where �⃗�𝑎 is linearly decreased from 2 to 0 throughout iterations (in both exploration and exploitation

phases), and 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() is a random vector in [0,1].

 [12]

where

𝐷𝐷��⃗ = �𝐶𝐶 ⋅ 𝑋𝑋∗����⃗ (𝑡𝑡) − �⃗�𝑋(𝑡𝑡)� [9]

 �⃗�𝑋(𝑡𝑡 + 1) = 𝑋𝑋∗����⃗ (𝑡𝑡) − 𝐴𝐴.𝐷𝐷��⃗ [10]

where 𝑡𝑡 indicates the current iteration, 𝐴𝐴 and 𝐶𝐶 are coefficient vectors, 𝑋𝑋∗ is the position vector of the

best solution obtained so far, and �⃗�𝑋 is the position vector. It is important to note that 𝑋𝑋∗ should be

adjusted after each iteration if a better solution exists.

The vectors 𝐴𝐴 and 𝐶𝐶 are calculated as Equations 11 and 12:

 𝐴𝐴 = 2�⃗�𝑎 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() − �⃗�𝑎 [11]

 𝐶𝐶 = 2 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() [12]

where �⃗�𝑎 is linearly decreased from 2 to 0 throughout iterations (in both exploration and exploitation

phases), and 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() is a random vector in [0,1].

 is linearly decreased from 2 to 0 throughout iterations (in both exploration and
exploitation phases), and the

𝐷𝐷��⃗ = �𝐶𝐶 ⋅ 𝑋𝑋∗����⃗ (𝑡𝑡) − �⃗�𝑋(𝑡𝑡)� [9]

 �⃗�𝑋(𝑡𝑡 + 1) = 𝑋𝑋∗����⃗ (𝑡𝑡) − 𝐴𝐴.𝐷𝐷��⃗ [10]

where 𝑡𝑡 indicates the current iteration, 𝐴𝐴 and 𝐶𝐶 are coefficient vectors, 𝑋𝑋∗ is the position vector of the

best solution obtained so far, and �⃗�𝑋 is the position vector. It is important to note that 𝑋𝑋∗ should be

adjusted after each iteration if a better solution exists.

The vectors 𝐴𝐴 and 𝐶𝐶 are calculated as Equations 11 and 12:

 𝐴𝐴 = 2�⃗�𝑎 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() − �⃗�𝑎 [11]

 𝐶𝐶 = 2 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() [12]

where �⃗�𝑎 is linearly decreased from 2 to 0 throughout iterations (in both exploration and exploitation

phases), and 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() is a random vector in [0,1]. is a random vector in [0,1].

Bubble-net Aattacking Method (Exploitation Phase)

In order to mathematically model the bubble-net behavior of humpback whales, two
approaches are designed as follows:

Shrinking Encircling Mechanism

It is accomplished by reducing the value of

𝐷𝐷��⃗ = �𝐶𝐶 ⋅ 𝑋𝑋∗����⃗ (𝑡𝑡) − �⃗�𝑋(𝑡𝑡)� [9]

 �⃗�𝑋(𝑡𝑡 + 1) = 𝑋𝑋∗����⃗ (𝑡𝑡) − 𝐴𝐴.𝐷𝐷��⃗ [10]

where 𝑡𝑡 indicates the current iteration, 𝐴𝐴 and 𝐶𝐶 are coefficient vectors, 𝑋𝑋∗ is the position vector of the

best solution obtained so far, and �⃗�𝑋 is the position vector. It is important to note that 𝑋𝑋∗ should be

adjusted after each iteration if a better solution exists.

The vectors 𝐴𝐴 and 𝐶𝐶 are calculated as Equations 11 and 12:

 𝐴𝐴 = 2�⃗�𝑎 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() − �⃗�𝑎 [11]

 𝐶𝐶 = 2 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() [12]

where �⃗�𝑎 is linearly decreased from 2 to 0 throughout iterations (in both exploration and exploitation

phases), and 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() is a random vector in [0,1].

 n in Equation 12. Note that the fluctuation
range of

𝐷𝐷��⃗ = �𝐶𝐶 ⋅ 𝑋𝑋∗����⃗ (𝑡𝑡) − �⃗�𝑋(𝑡𝑡)� [9]

 �⃗�𝑋(𝑡𝑡 + 1) = 𝑋𝑋∗����⃗ (𝑡𝑡) − 𝐴𝐴.𝐷𝐷��⃗ [10]

where 𝑡𝑡 indicates the current iteration, 𝐴𝐴 and 𝐶𝐶 are coefficient vectors, 𝑋𝑋∗ is the position vector of the

best solution obtained so far, and �⃗�𝑋 is the position vector. It is important to note that 𝑋𝑋∗ should be

adjusted after each iteration if a better solution exists.

The vectors 𝐴𝐴 and 𝐶𝐶 are calculated as Equations 11 and 12:

 𝐴𝐴 = 2�⃗�𝑎 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() − �⃗�𝑎 [11]

 𝐶𝐶 = 2 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() [12]

where �⃗�𝑎 is linearly decreased from 2 to 0 throughout iterations (in both exploration and exploitation

phases), and 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() is a random vector in [0,1].

 is likewise decreased by

𝐷𝐷��⃗ = �𝐶𝐶 ⋅ 𝑋𝑋∗����⃗ (𝑡𝑡) − �⃗�𝑋(𝑡𝑡)� [9]

 �⃗�𝑋(𝑡𝑡 + 1) = 𝑋𝑋∗����⃗ (𝑡𝑡) − 𝐴𝐴.𝐷𝐷��⃗ [10]

where 𝑡𝑡 indicates the current iteration, 𝐴𝐴 and 𝐶𝐶 are coefficient vectors, 𝑋𝑋∗ is the position vector of the

best solution obtained so far, and �⃗�𝑋 is the position vector. It is important to note that 𝑋𝑋∗ should be

adjusted after each iteration if a better solution exists.

The vectors 𝐴𝐴 and 𝐶𝐶 are calculated as Equations 11 and 12:

 𝐴𝐴 = 2�⃗�𝑎 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() − �⃗�𝑎 [11]

 𝐶𝐶 = 2 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() [12]

where �⃗�𝑎 is linearly decreased from 2 to 0 throughout iterations (in both exploration and exploitation

phases), and 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() is a random vector in [0,1].

. In other words,

𝐷𝐷��⃗ = �𝐶𝐶 ⋅ 𝑋𝑋∗����⃗ (𝑡𝑡) − �⃗�𝑋(𝑡𝑡)� [9]

 �⃗�𝑋(𝑡𝑡 + 1) = 𝑋𝑋∗����⃗ (𝑡𝑡) − 𝐴𝐴.𝐷𝐷��⃗ [10]

where 𝑡𝑡 indicates the current iteration, 𝐴𝐴 and 𝐶𝐶 are coefficient vectors, 𝑋𝑋∗ is the position vector of the

best solution obtained so far, and �⃗�𝑋 is the position vector. It is important to note that 𝑋𝑋∗ should be

adjusted after each iteration if a better solution exists.

The vectors 𝐴𝐴 and 𝐶𝐶 are calculated as Equations 11 and 12:

 𝐴𝐴 = 2�⃗�𝑎 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() − �⃗�𝑎 [11]

 𝐶𝐶 = 2 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() [12]

where �⃗�𝑎 is linearly decreased from 2 to 0 throughout iterations (in both exploration and exploitation

phases), and 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() is a random vector in [0,1].

 is a random number in the interval
[–a,a] where a is decreased from 2 to 0 throughout iterations.

Spiral Updating Position

A spiral equation is established between the whale’s position and its prey to simulate the
helix-shaped movement of humpback whales (Equation 13).

�⃗�𝑋(𝑡𝑡 + 1) = 𝐷𝐷′����⃗ ⋅ 𝑒𝑒𝑥𝑥𝑝𝑝𝑜𝑜𝑏𝑏 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐(2π𝑏𝑏) + 𝑋𝑋∗����⃗ (𝑡𝑡) [13]

where 𝐷𝐷′����⃗ is represented in Equation 14 and indicates the distance between the 𝑖𝑖-th whale to the prey

(best solution obtained so far), 𝑜𝑜 is a constant for defining the shape of the logarithmic spiral, 𝑏𝑏 is a

random number in [−1,1] and ⋅ is an element-by-element multiplication.

 𝐷𝐷′����⃗ = �𝑋𝑋∗����⃗ (𝑡𝑡) − �⃗�𝑋(𝑡𝑡)� [14]

 [13]

where

�⃗�𝑋(𝑡𝑡 + 1) = 𝐷𝐷′����⃗ ⋅ 𝑒𝑒𝑥𝑥𝑝𝑝𝑜𝑜𝑏𝑏 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐(2π𝑏𝑏) + 𝑋𝑋∗����⃗ (𝑡𝑡) [13]

where 𝐷𝐷′����⃗ is represented in Equation 14 and indicates the distance between the 𝑖𝑖-th whale to the prey

(best solution obtained so far), 𝑜𝑜 is a constant for defining the shape of the logarithmic spiral, 𝑏𝑏 is a

random number in [−1,1] and ⋅ is an element-by-element multiplication.

 𝐷𝐷′����⃗ = �𝑋𝑋∗����⃗ (𝑡𝑡) − �⃗�𝑋(𝑡𝑡)� [14]

 is represented in Equation 14 and indicates the distance between the i-th whale to
the prey (best solution obtained so far), b is a constant for defining the shape of the logarithmic
spiral, l is a random number in [–1,1] and . is an element-by-element multiplication.

2335Pertanika J. Sci. & Technol. 32 (5): 2327 - 2342 (2024)

Smoothing RRT Path Using Optimization Method

�⃗�𝑋(𝑡𝑡 + 1) = 𝐷𝐷′����⃗ ⋅ 𝑒𝑒𝑥𝑥𝑝𝑝𝑜𝑜𝑏𝑏 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐(2π𝑏𝑏) + 𝑋𝑋∗����⃗ (𝑡𝑡) [13]

where 𝐷𝐷′����⃗ is represented in Equation 14 and indicates the distance between the 𝑖𝑖-th whale to the prey

(best solution obtained so far), 𝑜𝑜 is a constant for defining the shape of the logarithmic spiral, 𝑏𝑏 is a

random number in [−1,1] and ⋅ is an element-by-element multiplication.

 𝐷𝐷′����⃗ = �𝑋𝑋∗����⃗ (𝑡𝑡) − �⃗�𝑋(𝑡𝑡)� [14] [14]

Humpback whales swim simultaneously in a diminishing circle and spiral pattern
around their prey. It is assumed that there is a 50% likelihood of picking either the shrinking
encirclement mechanism or the spiral model to update the whales’ position to characterize
this concurrent behavior. In addition to the bubble-net method, humpback whales search
for prey randomly. The mathematical model of the search is as follows.

Search for Prey (Exploration Phase)

Value �𝐴𝐴� > 1 emphasizes exploration and permits the WOA algorithm to perform a global search. The

mathematical model looks like this (Equations 15 and 16):

 𝐷𝐷��⃗ = �𝐶𝐶 ⋅ 𝑋𝑋𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑�����������⃗ (𝑡𝑡) − �⃗�𝑋(𝑡𝑡)� [15]

 �⃗�𝑋(𝑡𝑡 + 1) = 𝑋𝑋𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑�����������⃗ (𝑡𝑡) − 𝐴𝐴 ⋅ 𝐷𝐷��⃗ [16]

where 𝑋𝑋𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑

 emphasizes exploration and permits the WOA algorithm to perform a global
search. The mathematical model looks like this (Equations 15 and 16):

 �𝐴𝐴� > 1 emphasizes exploration and permits the WOA algorithm to perform a global search. The

mathematical model looks like this (Equations 15 and 16):

 𝐷𝐷��⃗ = �𝐶𝐶 ⋅ 𝑋𝑋𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑�����������⃗ (𝑡𝑡) − �⃗�𝑋(𝑡𝑡)� [15]

 �⃗�𝑋(𝑡𝑡 + 1) = 𝑋𝑋𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑�����������⃗ (𝑡𝑡) − 𝐴𝐴 ⋅ 𝐷𝐷��⃗ [16]

where 𝑋𝑋𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑

 [15]

 �𝐴𝐴� > 1 emphasizes exploration and permits the WOA algorithm to perform a global search. The

mathematical model looks like this (Equations 15 and 16):

 𝐷𝐷��⃗ = �𝐶𝐶 ⋅ 𝑋𝑋𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑�����������⃗ (𝑡𝑡) − �⃗�𝑋(𝑡𝑡)� [15]

 �⃗�𝑋(𝑡𝑡 + 1) = 𝑋𝑋𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑�����������⃗ (𝑡𝑡) − 𝐴𝐴 ⋅ 𝐷𝐷��⃗ [16]

where 𝑋𝑋𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑

 [16]

where Xrand is a random position vector (a random whale) chosen from the current population.

Proposed Modification

In order to further improve the smoothness of the path, an adaptive value of 𝐶𝐶

𝐷𝐷��⃗

�⃗�𝑋(𝑡𝑡 + 1)

 is proposed
based on the occupancy of the X* points instead of a constant number. The occupancy of
a grid point inside an occupancy map is shown in Equation 17, where 0 is considered free
space, 1 is considered occupied space and –1 is considered an unknown space. The constant
value 2 is replaced with Equation 18, which means that

𝐶𝐶

𝐷𝐷��⃗

�⃗�𝑋(𝑡𝑡 + 1)

 and consequently

𝐶𝐶

𝐷𝐷��⃗

�⃗�𝑋(𝑡𝑡 + 1) is
only updated when the occupancy of the point is free space or an unknown space. The
modified equation of C is shown in Equation 19.

𝑐𝑐𝑐𝑐𝑐𝑐𝑋𝑋∗(𝑡𝑡)���������������⃗ ∪ 𝑀𝑀 = �
0 𝑓𝑓𝑟𝑟𝑒𝑒𝑒𝑒 𝑐𝑐𝑝𝑝𝑎𝑎𝑐𝑐𝑒𝑒
1 𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑝𝑝𝑖𝑖𝑒𝑒𝑑𝑑 𝑐𝑐𝑝𝑝𝑎𝑎𝑐𝑐𝑒𝑒
−1 𝑜𝑜𝑛𝑛𝑘𝑘𝑛𝑛𝑐𝑐𝑢𝑢𝑛𝑛 𝑐𝑐𝑝𝑝𝑎𝑎𝑐𝑐𝑒𝑒

 [17]

 𝑢𝑢��⃗ = 1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑋𝑋∗(𝑡𝑡)���������������⃗ [18]

 𝐶𝐶 = 𝑢𝑢��⃗ ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑()

 [17]𝑐𝑐𝑐𝑐𝑐𝑐𝑋𝑋∗(𝑡𝑡)���������������⃗ ∪ 𝑀𝑀 = �
0 𝑓𝑓𝑟𝑟𝑒𝑒𝑒𝑒 𝑐𝑐𝑝𝑝𝑎𝑎𝑐𝑐𝑒𝑒
1 𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑝𝑝𝑖𝑖𝑒𝑒𝑑𝑑 𝑐𝑐𝑝𝑝𝑎𝑎𝑐𝑐𝑒𝑒
−1 𝑜𝑜𝑛𝑛𝑘𝑘𝑛𝑛𝑐𝑐𝑢𝑢𝑛𝑛 𝑐𝑐𝑝𝑝𝑎𝑎𝑐𝑐𝑒𝑒

 [17]

 𝑢𝑢��⃗ = 1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑋𝑋∗(𝑡𝑡)���������������⃗ [18]

 𝐶𝐶 = 𝑢𝑢��⃗ ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑()

 [18]

𝑐𝑐𝑐𝑐𝑐𝑐𝑋𝑋∗(𝑡𝑡)���������������⃗ ∪ 𝑀𝑀 = �
0 𝑓𝑓𝑟𝑟𝑒𝑒𝑒𝑒 𝑐𝑐𝑝𝑝𝑎𝑎𝑐𝑐𝑒𝑒
1 𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑝𝑝𝑖𝑖𝑒𝑒𝑑𝑑 𝑐𝑐𝑝𝑝𝑎𝑎𝑐𝑐𝑒𝑒
−1 𝑜𝑜𝑛𝑛𝑘𝑘𝑛𝑛𝑐𝑐𝑢𝑢𝑛𝑛 𝑐𝑐𝑝𝑝𝑎𝑎𝑐𝑐𝑒𝑒

 [17]

 𝑢𝑢��⃗ = 1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑋𝑋∗(𝑡𝑡)���������������⃗ [18]

 𝐶𝐶 = 𝑢𝑢��⃗ ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() [19]

The algorithm for the WOA is shown in Figure 6. The maximum iteration number tmax
is set to 20 for all the experiments.

EXPERIMENTAL SETUP AND PERFORMANCE EVALUATION

An experimental setup was devised to assess the proposed method’s robustness. Two
factors were varied in the environment: the start-goal points and the randomness of RRT

2336 Pertanika J. Sci. & Technol. 32 (5): 2327 - 2342 (2024)

Izzati Saleh, Nuradlin Borhan and Wan Rahiman

path solutions. The algorithm’s versatility and robustness in accommodating different
configurations can be evaluated by altering the start-goal points.

The RRT algorithm generates paths based on random sampling, resulting in potential
variations with each execution. The Random Number Generator (RNG) seeds were saved
for data collection to ensure the planned path’s reproducibility. Three sets of RNG seeds
were selected to test the algorithm’s robustness. The initial solution within the population,
denoted as X, was recorded to facilitate a fair performance comparison among optimization
algorithms. This guarantees that all optimization algorithms start with the same set of
solutions and the same population size for each trial.

Environment Setup

Figures 7 and 8 illustrate the six different environmental setups used in the experiment. The
occupancy map is based on the Engineering Design Lab in the USM Engineering Campus.
It is inflated with a radius of 0.4m, corresponding to the physical size of the hardware robot.
This inflation ensures that the initial planned path generated by the RRT algorithm is feasible
for the robot to navigate. The simulation experiment was implemented using MATLAB ver.
2020b and executed on a laptop with an Intel Core i7-1065G7 CPU @1.30GHz.

1: Initialize the whales population Xi(i = 1,2…n)
2: Calculate the fitness of each search agent
3: X* = the best search agent
4: while t < tmax do
5: for each search agent do
6: Update a, A, C, l and p
7: if p < 0.5 then
8: if│A│< 1 then
9: Update the position of the current search agnt by eq. (10)
10: else if │A│ ≥ 1 then
11: Select random search agent xrand

12: Update the position of the current search agent by Eq. (17)
13: end if
14: else if p ≥ 0.5 then
15: Update the position of the current search by using Eq. (14)
16: end if
17: end for
18: Check if any search agent goes beyond the search space and amend it
19: Plot path using PCHIP
20: Calculate the fitness of each search agent
21: Update X* if there is a better solution
22: end while
21: return X*

Figure 6. RRT-WOA Algorithm

2337Pertanika J. Sci. & Technol. 32 (5): 2327 - 2342 (2024)

Smoothing RRT Path Using Optimization Method

Benchmark Test

A performance evaluation and comparison were conducted to determine whether the
proposed method (denoted as WOA (modified) onwards) performs better in smoothing the
RRT path than other population-based optimization algorithms, namely PSO, ABC, and FA.
Table 1 presents the parameters used in the performance comparison of these algorithms.

The evaluation focused on key metrics to assess the effectiveness and efficiency of
these algorithms. The metrics analyzed included the average optimization time, the mean
smoothness of the resulting paths, and the percentage improvement achieved in path
smoothing.

Figure 7. Generated RRT for Path 1 (Start point:(5.3,9.0) and Goal point: (8.5,12.0)) using (a) RNG 1, (b)
RNG 2, and (c) RNG 3 *for ease of viewing, all plot legend used the same indicator

Figure 8. Generated RRT for Path 2 (Start Point: (6.0,2.0) and Goal point: (6.3,9.5)) using (a) RNG 1, (b)
RNG 2, and (c) RNG 3 *for ease of viewing, all plot legend used the same indicator

(a) (b) (c)

(a) (b) (c)

2338 Pertanika J. Sci. & Technol. 32 (5): 2327 - 2342 (2024)

Izzati Saleh, Nuradlin Borhan and Wan Rahiman

RESULTS AND DISCUSSION

Benchmark Performance Analysis

The first benchmark test evaluated the optimization time of multiple algorithms. Figure 9
shows that WOA (modified) achieves the lowest median and second smallest spread for

Table 1
Benchmark test parameters

Algorithm Parameters Values

Common
Population size, 𝑛𝑛 30
Number of iterations, 𝑡𝑡𝑚𝑚𝑎𝑎𝑥𝑥 20

WOA (Mirjalili & Lewis, 2016)
Coefficient vector, 𝐶𝐶 2 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑()

Coefficient vector, 𝐴𝐴 2�⃗�𝑎 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() − �⃗�𝑎
Logarithmic spiral, 𝑏𝑏 [−1,1]

WOA (modified)
Coefficient vector, 𝐶𝐶 𝑢𝑢��⃗ ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑()

Coefficient vector, 𝐴𝐴 2�⃗�𝑎 ⋅ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() − �⃗�𝑎
Logarithmic spiral, 𝑏𝑏 [−1,1]

PSO (Heris, 2017)
Cognitive component, 𝑐𝑐1 1.5
Social component, 𝑐𝑐2 1.5

ABC (Heris, 2020)
Inertia weight, 𝑢𝑢𝑖𝑖 1
Number of employed bees 𝑛𝑛
Number of onlooker bees 𝑛𝑛

FA (Yang, 2009)

Number of scout bees 𝑛𝑛
Trial limit, 𝐿𝐿 0.6𝑚𝑚𝑛𝑛 ∗
Mutation number, 𝜙𝜙 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑([−1,1])
Attraction coefficient, β0 2
Absorption coefficient, γ 1

Figure 9. Boxplot analysis of optimization time
for various optimization algorithms (lower values
indicate better performance)

optimization time, indicating superior and
consistent performance. WOA follows with
the second-lowest median and a smaller
spread. PSO demonstrates a slightly higher
median and the smallest spread, indicating
relatively better and consistent performance.
ABC performs competitively with a higher
median and small spread. FA exhibits the
highest median and largest spread, indicating
lower performance and greater variability.

The second benchmark test evaluated
multiple optimization algorithms based on
path smoothness. From the boxplot shown
in Figure 10, WOA (modified) demonstrates
the lowest median and the smallest spread,

2339Pertanika J. Sci. & Technol. 32 (5): 2327 - 2342 (2024)

Smoothing RRT Path Using Optimization Method

indicating better and more consistent performance. PSO shows a slightly higher median with
a small spread, while ABC exhibits the highest median and the largest spread, indicating
relatively poorer performance with more variability. FA falls in between, with a median
higher than PSO but lower than ABC and a slightly larger spread than PSO.

The third benchmark test evaluated multiple optimization algorithms based on their
ability to improve the smoothness of the initial RRT path. From boxplot data in Figure
11, WOA (modified) demonstrates the highest median and the smallest spread, indicating

Figure 10. Boxplot analysis of optimization results in
path smoothness for various optimization algorithms
(lower values indicate better performance)

Figure 11. Boxplot analysis of optimization
percentage improvement in path smoothness for
various optimization algorithms (higher values
indicate better performance)

Figure 12. Radar chart for performance ranking (best to
worst: WOA (modified), WOA, PSO, ABC & FA)

the best improvement percentage and most
consistent performance. On the other hand,
FA shows the lowest median with a smaller
spread, suggesting relatively poorer but
more consistent performance. PSO and
ABC exhibit larger spreads, indicating
more variability in their results, with PSO
having a higher percentage of improvement
compared to ABC.

The r e su l t s o f t he benchmark
performance test were visualized using a
radar chart, as depicted in Figure 12. The
chart concisely summarizes the algorithm
rankings based on their overall performance.
According to the plot, the algorithm that

WOA
(modified)

FA

WOA

PSO ABC

2340 Pertanika J. Sci. & Technol. 32 (5): 2327 - 2342 (2024)

Izzati Saleh, Nuradlin Borhan and Wan Rahiman

achieved the highest overall performance was WOA (modified), closely followed by WOA.
PSO attained the third rank, while ABC and FA demonstrated the lowest performance
among the tested algorithms. These rankings offer a clear representation of the relative
performance of each algorithm in the benchmark test.

Results of Smoothed RRT Path

The result of the smoothed RRT path using WOA is shown in Figure 13 for Path 1 and
Figure 14 for Path 2. From Figures 13 and 14, it could be observed that the optimized
path (labeled with an orange line) is able to smooth out the original RRT path while still
maintaining its path validity.

Figure 14. Smoothed RRT for Path 1 for Path 2 (Start Point: (6.0,2.0) and Goal point: (6.3,9.5)) using (a)
RNG 1, (b) RNG 2, and (c) RNG 3 *for ease of viewing, all plot legend used the same indicator

Figure 13. Smoothed RRT for Path 1 (Start point:(5.3,9.0) and Goal point: (8.5,12.0)) using (a) RNG 1, (b)
RNG 2, and (c) RNG 3 *for ease of viewing, all plot legend used the same indicator

(a) (b) (c)

(a) (b) (c)

2341Pertanika J. Sci. & Technol. 32 (5): 2327 - 2342 (2024)

Smoothing RRT Path Using Optimization Method

CONCLUSION

In conclusion, this research has successfully addressed the challenges of using the RRT
algorithm as a path planner. By integrating the RRT path planner with a modified version of
the WOA (RRT-WOA), significant improvements have been made in trajectory smoothness
and path curvature reduction. The novel approach of incorporating parameter variation
(𝐶𝐶

𝐷𝐷��⃗

�⃗�𝑋(𝑡𝑡 + 1)

) in the modified WOA algorithm has effectively optimized trajectory smoothness.
Additionally, using Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) for point
interpolation has further contributed to smoothing generated paths. The modified WOA
algorithm has demonstrated its superiority over popular population-based optimization
algorithms such as PSO, ABC, and FA through a comprehensive comparative analysis.
The WOA (modified) algorithm outperformed these alternatives in terms of optimization
time, trajectory smoothness, and improvement from the initial guess.

FUTURE WORKS

In future research, we hope to fine-tune the updated equations and parameters so that the
proposed equation applies to all path types.

ACKNOWLEDGEMENT

This work was supported by Collaborative Research in Engineering, Science, and
Technology (CREST), Malaysia, with grant no. 304/PELECT/6050423/C121.

REFERENCES
Abbadi, A., & Matousek, R. (2014, November). Path planning implementation using MATLAB. [Paper

presentation]. International Conference of Technical Computing Bratislava 2014, Bratislava, Slovakia.
https://doi.org/10.13140/2.1.3324.5767

Alam, M. S., & Rafique, M. U. (2015). Mobile robot path planning in environments cluttered with non-convex
obstacles using particle swarm optimization. In 2015 International Conference on Control, Automation
and Robotics (pp. 32-36). IEEE Publishing. https://doi.org/10.1109/ICCAR.2015.7165997

Dao, T. K., Pan, T. S., & Pan, J. S. (2016). A multi-objective optimal mobile robot path planning based on
whale optimization algorithm. In International Conference on Signal Processing Proceedings (pp. 337-
342). IEEE Publishing. https://doi.org/10.1109/ICSP.2016.7877851

Dosoftei, C. C., Popovici, A. T., Sacaleanu, P. R., Gherghel, P. M., & Budaciu, C. (2021). Hardware in the
loop topology for an omnidirectional mobile robot using matlab in a robot operating system environment.
Symmetry, 13(6), Article 969. https://doi.org/10.3390/sym13060969

Galli, M., Barber, R., Garrido, S., & Moreno, L. (2017). Path planning using Matlab-ROS integration applied to
mobile robots. In 2017 IEEE International Conference on Autonomous Robot Systems and Competitions
(ICARSC) (pp. 98-103). IEEE Publishing. https://doi.org/10.1109/ICARSC.2017.7964059

2342 Pertanika J. Sci. & Technol. 32 (5): 2327 - 2342 (2024)

Izzati Saleh, Nuradlin Borhan and Wan Rahiman

Heris, M. K. (2020). Artificial bee colony in Matlab. Yarpiz. https://yarpiz.com/297/ypea114-artificial-bee-colony

Heris, M. K. (2017). Particle swarm optimization. Yarpiz. https://yarpiz.com/50/ypea102-particle-swarm-
optimization

Jeong, I. B., Lee, S. J., & Kim, J. H. (2019). Quick-RRT*: Triangular inequality-based implementation of
RRT* with improved initial solution and convergence rate. Expert Systems with Applications, 123, 82-90.
https://doi.org/10.1016/j.eswa.2019.01.032

Karur, K., Sharma, N., Dharmatti, C., & Siegel, J. E. (2021). A survey of path planning algorithms for mobile
robots. Vehicles, 3(3), 448-468. https://doi.org/10.3390/vehicles3030027

Lavalle, S. M., & Kuffner, J. J. (2001). Randomized kinodynamic planning. The International Journal of
Robotics Research, 20(5), 378-400. https://doi.org/10.1177/02783640122067453

Li, R., Liu, J., Zhang, L., & Hang, Y. (2014). LIDAR/MEMS IMU integrated navigation (SLAM) method
for a small UAV in indoor environments. In 2014 DGON Inertial Sensors and Systems (ISS) (pp. 1-15).
IEEE Publishing. https://doi.org/10.1109/InertialSensors.2014.7049479

Mac, T. T., Copot, C., Tran, D. T., & De Keyser, R. (2016). Heuristic approaches in robot path planning: A
survey. Robotics and Autonomous Systems, 86, 13-28. https://doi.org/10.1016/j.robot.2016.08.001

MATLAB. (2020). Piecewise cubic hermite interpolating polynomial (PCHIP). MathWorks. https://www.
mathworks.com/help/matlab/ref/pchip.html

Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95,
51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008

Naderi, K., Rajamaki, J., & Hamalainen, P. (2015). RT-RRT∗: A real-time path planning algorithm based on
RRT∗. In Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games (MIG 2015) (pp.
113-118). Association for Computing Machinery https://doi.org/10.1145/2822013.2822036

Xinyu, W., Xiaojuan, L., Yong, G., Jiadong, S., & Rui, W. (2019). Bidirectional potential guided rrt* for motion
planning. IEEE Access, 7, 95046-95057. https://doi.org/10.1109/ACCESS.2019.2928846

Yang, X. S. (2009). Firefly algorithms for multimodal optimization. In O. Watanabe & T. Zeugmann (Eds.),
Stochastic Algorithms: Foundations and Applications (pp. 169-178). Springer Berlin Heidelberg. https://
doi.org/10.1007/978-3-642-04944-6_14

Yu, Z., & Xiang, L. (2021). NPQ-RRT ∗: An improved RRT ∗ Approach to hybrid path planning. Complexity,
2021(1), Article 6633878. https://doi.org/10.1155/2021/6633878

Zhou, X., Gao, Y., & Guan, L. (2019). Towards goal-directed navigation through combining learning based
global and local planners. Sensors, 19(1), Article 176. https://doi.org/10.3390/s19010176

